Automated identification of sleep disorders using wavelet-based features extracted from electrooculogram and electromyogram signals
Article
Article Title | Automated identification of sleep disorders using wavelet-based features extracted from electrooculogram and electromyogram signals |
---|---|
ERA Journal ID | 5040 |
Article Category | Article |
Authors | Sharma, Manish, Darji, Jay, Thakrar, Madhav and Acharya, U. Rajendra |
Journal Title | Computers in Biology and Medicine |
Journal Citation | 143 |
Article Number | 105224 |
Number of Pages | 10 |
Year | 2022 |
Publisher | Elsevier |
Place of Publication | United Kingdom |
ISSN | 0010-4825 |
1879-0534 | |
Digital Object Identifier (DOI) | https://doi.org/10.1016/j.compbiomed.2022.105224 |
Web Address (URL) | https://www.sciencedirect.com/science/article/abs/pii/S0010482522000166 |
Abstract | Sleep is imperative for a healthy life as it rejuvenates memory, cognitive performance, cell repair and eliminates waste from the muscles. Sleep-related disorders such as insomnia, narcolepsy, sleep-disordered breathing (SDB), periodic leg movement (PLM), and bruxism lead to hormonal imbalance, slower reaction time, memory problems, depression, and headaches. This adversity of sleep disorder gained the attention of many sleep researchers. To examine the reasons for sleep disorders, it is imperative to monitor and analyze the sleep of the affected patients. The conventional method of monitoring sleep and identifying the sleep disorders using polysomnographic (PSG) recording is a complicated and cumbersome task in which multiple physiological signals with multiple modalities are recorded for a long (overnight) duration. The PSG recordings are carried out in sophisticated sleep laboratories and cannot be considered suitable for real-time sleep monitoring. Thus, a simple and patient-convenient system is highly desirable to monitor and analyze the quality of sleep. We proposed an automatic detection of sleep disorders using single modal electrooculogram (EOG) and electromyogram (EMG) signals. We have used a new maximally flat multiplier-less biorthogonal filter bank for obtaining discrete wavelet transform of the signals. We computed Hjorth parameters (HOP) such as activity, mobility, and complexity from the wavelet sub-bands. Highly discriminative HOP features are fed to different machine learning classifiers to develop the model. Our results show that the developed system can classify insomnia, narcolepsy, NFLE, PLM, and REM behaviour disorder (RBD) against normal healthy subjects with an accuracy of 99.7%, 97.6%, 97.5%, 97.5%, and 98.3%, respectively using combined features from EOG and EMG signal. The proposed model has yielded an accuracy of 94.3% in classifying six classes using an ensemble bagged trees classifier (EBTC) with a 10-fold cross-validation technique. Hence, EOG and EMG-based proposed methods can be deployed in a portable home-based environment to identify the type of sleep disorders automatically. |
Keywords | CAP; EOG; Electraomyograph; EMG; Sleep; Electrooculogram; Sleep disorder ; Cyclic alternative pattern |
ANZSRC Field of Research 2020 | 400306. Computational physiology |
Public Notes | Files associated with this item cannot be displayed due to copyright restrictions. |
Byline Affiliations | Institute of Infrastructure, Technology, Research and Management (IITRAM), India |
Ngee Ann Polytechnic, Singapore | |
Asia University, Taiwan | |
Singapore University of Social Sciences (SUSS), Singapore |
https://research.usq.edu.au/item/z1w0y/automated-identification-of-sleep-disorders-using-wavelet-based-features-extracted-from-electrooculogram-and-electromyogram-signals
62
total views0
total downloads3
views this month0
downloads this month