Automated accurate detection of depression using twin Pascal's triangles lattice pattern with EEG Signals
Article
Tasci, Gulay, Loh, Hui Wen, Barua, Prabal Datta, Baygin, Mehmet, Tasci, Burak, Dogan, Sengul, Tuncer, Turker, Palmer, Elizabeth Emma, Tan, Ru-San and Acharya, U. Rajendra. 2023. "Automated accurate detection of depression using twin Pascal's triangles lattice pattern with EEG Signals." Knowledge-Based Systems. 260. https://doi.org/10.1016/j.knosys.2022.110190
Article Title | Automated accurate detection of depression using twin Pascal's triangles lattice pattern with EEG Signals |
---|---|
ERA Journal ID | 18062 |
Article Category | Article |
Authors | Tasci, Gulay, Loh, Hui Wen, Barua, Prabal Datta, Baygin, Mehmet, Tasci, Burak, Dogan, Sengul, Tuncer, Turker, Palmer, Elizabeth Emma, Tan, Ru-San and Acharya, U. Rajendra |
Journal Title | Knowledge-Based Systems |
Journal Citation | 260 |
Article Number | 110190 |
Number of Pages | 15 |
Year | 2023 |
Publisher | Elsevier |
Place of Publication | Netherlands |
ISSN | 0950-7051 |
1872-7409 | |
Digital Object Identifier (DOI) | https://doi.org/10.1016/j.knosys.2022.110190 |
Web Address (URL) | https://www.sciencedirect.com/science/article/pii/S0950705122012862 |
Abstract | Electroencephalogram (EEG)-based major depressive disorder (MDD) machine learning detection models can objectively differentiate MDD from healthy controls but are limited by high complexities or low accuracies. This work presents a self-organized computationally lightweight handcrafted classification model for accurate MDD detection using a reference subject-based validation strategy. We used the public Multimodal Open Dataset for Mental Disorder Analysis (MODMA) comprising 128-channel EEG signals from 24 MDD and 29 healthy control (HC) subjects. The input EEG was decomposed using multilevel discrete wavelet transform with Daubechies 4 mother wavelet function into eight low- and high-level wavelet bands. We used a novel Twin Pascal’s Triangles Lattice Pattern(TPTLP) comprising an array of 25 values to extract local textural features from the raw EEG signal and subbands. For each overlapping signal block of length 25, two walking paths that traced the maximum and minimum L1-norm distances from v1 to v25 of the TPTLP were dynamically generated to extract features. Forty statistical features were also extracted in parallel per run. We employed neighborhood component analysis for feature selection, a k-nearest neighbor classifier to obtain 128 channel-wise prediction vectors, iterative hard majority voting to generate 126 voted vectors, and a greedy algorithm to determine the best overall model result. Our generated model attained the best channel-wise and overall model accuracies. The generated system attained an accuracy of 76.08% (for Channel 1) and 83.96% (voted from the top 13 channels) using leave-one-subject-out(LOSO) cross-validation (CV) and 100% using 10-fold CV strategies, which outperformed other published models developed using same (MODMA) dataset. |
Keywords | Dynamic feature extraction; Twin Pascal’s Triangles Lattice Pattern; Major depressive disorder; Electroencephalography; Signal decomposition |
ANZSRC Field of Research 2020 | 400306. Computational physiology |
Public Notes | Files associated with this item cannot be displayed due to copyright restrictions. |
Byline Affiliations | Elazig Fethi Sekin City Hospital, Turkey |
Singapore University of Social Sciences (SUSS), Singapore | |
School of Business | |
University of Technology Sydney | |
Ardahan University, Turkiye | |
Firat University, Turkey | |
Sydney Children's Hospital, Australia | |
University of New South Wales | |
National Heart Centre, Singapore | |
Duke-NUS Medical School, Singapore | |
Ngee Ann Polytechnic, Singapore | |
Asia University, Taiwan |
Permalink -
https://research.usq.edu.au/item/z1w35/automated-accurate-detection-of-depression-using-twin-pascal-s-triangles-lattice-pattern-with-eeg-signals
212
total views0
total downloads35
views this month0
downloads this month
Export as
Related outputs
Automated hip dysplasia detection using novel FlexiLBPHOG model with ultrasound images
Key, Sefa, Kurum, Huseyin, Esmez, Omer, Hafeez-Baig, Abdul, Hajiyeva, Rena, Dogan, Sengul and Tuncer, Turker. 2025. "Automated hip dysplasia detection using novel FlexiLBPHOG model with ultrasound images." Ain Shams Engineering Journal. 16 (1). https://doi.org/10.1016/j.asej.2024.103235Artificial Intelligence-Based Suicide Prevention and Prediction: A Systematic Review (2019-2023)
Atmakuru, Anirudh, Shahini, Alen, Chakraborty, Subrata, Seoni, Silvia, Salvi, Massimo, Hafeez-Baig, Abdul, Rashid, Sadaf, Tan, Ru San, Barua, Prabal Datta, Molinari, Filippo and Acharya, U Rajendra. 2025. "Artificial Intelligence-Based Suicide Prevention and Prediction: A Systematic Review (2019-2023)." Information Fusion. 114. https://doi.org/10.1016/j.inffus.2024.102673Explainable deeply-fused nets electricity demand prediction model: Factoring climate predictors for accuracy and deeper insights with probabilistic confidence interval and point-based forecasts
Ghimire, Sujan, AL-Musaylh, Mohanad S., Nguyen-Huy, Thong, Deo, Ravinesh C., Acharya, Rajendra, Casillas-Perez, David, Yaseen, Zaher Mundher and Salcedo-sanz, Sancho. 2025. "Explainable deeply-fused nets electricity demand prediction model: Factoring climate predictors for accuracy and deeper insights with probabilistic confidence interval and point-based forecasts." Applied Energy. 378 (Part A). https://doi.org/10.1016/j.apenergy.2024.124763AttentionPoolMobileNeXt: An automated construction damage detection model based on a new convolutional neural network and deep feature engineering models
Aydin, Mehmet, Barua, Prabal Datta, Chadalavada, Sreenivasulu, Dogan, Sengul, Tuncer, Turker, Chakraborty, Subrata and Acharya, Rajendra U.. 2025. "AttentionPoolMobileNeXt: An automated construction damage detection model based on a new convolutional neural network and deep feature engineering models." Multimedia Tools and Applications. 84 (4), pp. 1821-1843. https://doi.org/10.1007/s11042-024-19163-2Directed Lobish-based explainable feature engineering model with TTPat and CWINCA for EEG artifact classification
Tuncer, Turker, Dogan, Sengul, Baygin, Mehmet, Tasci, Irem, Mungen, Bulent, Tasci, Burak, Barua, Prabal Datta and Acharya, U.R.. 2024. "Directed Lobish-based explainable feature engineering model with TTPat and CWINCA for EEG artifact classification." Knowledge-Based Systems. 305. https://doi.org/10.1016/j.knosys.2024.112555Retinal Health Screening Using Artificial Intelligence with Digital Fundus Images: A Review of the Last Decade (2012-2023)
Islam, Saad, Deo, Ravinesh C., Barua, Prabal Datta, Soar, Jeffrey, Yu, Ping and Acharya, U. Rajendra. 2024. "Retinal Health Screening Using Artificial Intelligence with Digital Fundus Images: A Review of the Last Decade (2012-2023)." IEEE Access. 12, pp. 176630-176685. https://doi.org/10.1109/ACCESS.2024.3477420Automated EEG-based language detection using directed quantum pattern technique
Dogan, Sengul, Tuncer, Turker, Barua, Prabal Datta and Acharya, U.R.. 2024. "Automated EEG-based language detection using directed quantum pattern technique." Applied Soft Computing. 167 (Part A). https://doi.org/10.1016/j.asoc.2024.112301A Novel Hybrid Model for Automatic Non-Small Cell Lung Cancer Classification Using Histopathological Images
Katar, Oguzhan, Yildirim, Ozal, Tan, Ru-San and Acharya, U Rajendra. 2024. "A Novel Hybrid Model for Automatic Non-Small Cell Lung Cancer Classification Using Histopathological Images." Diagnostics. 14 (22). https://doi.org/10.3390/diagnostics14222497Synthetic Data Generation via Generative Adversarial Networks in Healthcare: A Systematic Review of Image- and Signal-Based Studies
Akpinar, Muhammed Halil, Sengur, Abdulkadir, Salvi, Massimo, Seoni, Silvia, Faust, Oliver, Mir, Hasan, Molinari,Filippo and Acharya, U. Rajendra. 2024. "Synthetic Data Generation via Generative Adversarial Networks in Healthcare: A Systematic Review of Image- and Signal-Based Studies." IEEE Open Journal of Engineering in Medicine and Biology. 6, pp. 183-192. https://doi.org/10.1109/OJEMB.2024.3508472RECOMED: A comprehensive pharmaceutical recommendation system
Zomorodi, Mariam, Ghodsollahee, Ismail, Martin, Jennifer H, Talley, Nicholas J, Salari, Vahid, Pławiak, Paweł, Rahimi, Kazem and Acharya, U.R.. 2024. "RECOMED: A comprehensive pharmaceutical recommendation system." Artificial Intelligence in Medicine. 157. https://doi.org/10.1016/j.artmed.2024.102981Artificial intelligence in assessing cardiovascular diseases and risk factors via retinal fundus images: A review of the last decade
Abdollahi, Mirsaeed, Jafarizadeh, Ali, Ghafouri-Asbagh, Amirhosein, Sobhi, Navid, Pourmoghtader, Keysan, Pedrammehr, Siamak, Asadi, Houshyar, Tan, Ru-San, Alizadehsani, Roohallah and Acharya, U. Rajendra. 2024. "Artificial intelligence in assessing cardiovascular diseases and risk factors via retinal fundus images: A review of the last decade." WIREs Data Mining and Knowledge Discovery. 14 (6). https://doi.org/10.1002/widm.1560Early prediction of sudden cardiac death using multimodal fusion of ECG Features extracted from Hilbert–Huang and wavelet transforms with explainable vision transformer and CNN models
Telangore, Hardik, Azad, Victor, Sharma, Manish, Bhurane, Ankit, Tan, Ru San and Acharya, U. Rajendra. 2024. "Early prediction of sudden cardiac death using multimodal fusion of ECG Features extracted from Hilbert–Huang and wavelet transforms with explainable vision transformer and CNN models." Computer Methods and Programs in Biomedicine. 257. https://doi.org/10.1016/j.cmpb.2024.108455A Pragmatic Approach to Fetal Monitoring via Cardiotocography Using Feature Elimination and Hyperparameter Optimization
Hardalac, Firat, Akmal, Haad, Ayturan, Kubilay, Acharya, U. Rajendra and Tan, Ru-San. 2024. "A Pragmatic Approach to Fetal Monitoring via Cardiotocography Using Feature Elimination and Hyperparameter Optimization." Interdisciplinary Sciences: Computational Life Sciences. 16 (4), pp. 882-906. https://doi.org/10.1007/s12539-024-00647-6Automated System for the Detection of Heart Anomalies Using Phonocardiograms: A Systematic Review
Gudigar, Anjan, Raghavendra, U., Maithri, M., Samanth, Jyothi, Inamdar, Mahesh Anil, Vidhya, V., Vicnesh, Jahmunah, Prabhu, Mukund A., Tan, Ru-San, Yeong, Chai Hong, Molinari, Filippo and Acharya, U. R.. 2024. "Automated System for the Detection of Heart Anomalies Using Phonocardiograms: A Systematic Review." IEEE Access. 12, pp. 138399-138428. https://doi.org/10.1109/ACCESS.2024.3465511