Multilevel hybrid accurate handcrafted model for myocardial infarction classification using ECG signals
Article
Barua, Prabal Datta, Aydemir, Emrah, Dogan, Sengul, Kobat, Mehmet Ali, Demir, Fahrettin Burak, Baygin, Mehmet, Tuncer, Turker, Oh, Shu Lih, Tan, Ru-San and Acharya, U. Rajendra. 2023. "Multilevel hybrid accurate handcrafted model for myocardial infarction classification using ECG signals." International Journal of Machine Learning and Cybernetics. 14 (5), pp. 1651-1668. https://doi.org/10.1007/s13042-022-01718-0
Article Title | Multilevel hybrid accurate handcrafted model for myocardial infarction classification using ECG signals |
---|---|
ERA Journal ID | 125217 |
Article Category | Article |
Authors | Barua, Prabal Datta, Aydemir, Emrah, Dogan, Sengul, Kobat, Mehmet Ali, Demir, Fahrettin Burak, Baygin, Mehmet, Tuncer, Turker, Oh, Shu Lih, Tan, Ru-San and Acharya, U. Rajendra |
Journal Title | International Journal of Machine Learning and Cybernetics |
Journal Citation | 14 (5), pp. 1651-1668 |
Number of Pages | 18 |
Year | 2023 |
Publisher | Springer |
Place of Publication | Germany |
ISSN | 1868-8071 |
1868-808X | |
Digital Object Identifier (DOI) | https://doi.org/10.1007/s13042-022-01718-0 |
Web Address (URL) | https://link.springer.com/article/10.1007/s13042-022-01718-0 |
Abstract | Myocardial infarction (MI) is detected using electrocardiography (ECG) signals. Machine learning (ML) models have been used for automated MI detection on ECG signals. Deep learning models generally yield high classification performance but are computationally intensive. We have developed a novel multilevel hybrid feature extraction-based classification model with low time complexity for MI classification. The study dataset comprising 12-lead ECGs belonging to one healthy and 10 MI classes were downloaded from a public ECG signal databank. The model architecture comprised multilevel hybrid feature extraction, iterative feature selection, classification, and iterative majority voting (IMV). In the hybrid handcrafted feature (HHF) generation phase, both textural and statistical feature extraction functions were used to extract features from ECG beats but only at a low level. A new pooling-based multilevel decomposition model was presented to enable them to create features at a high level. This model used average and maximum pooling to create decomposed signals. Using these pooling functions, an unbalanced tree was obtained. Therefore, this model was named multilevel unbalanced pooling tree transformation (MUPTT). On the feature extraction side, two extractors (functions) were used to generate both statistical and textural features. To generate statistical features, 20 commonly used moments were used. A new, improved symmetric binary pattern function was proposed to generate textural features. Both feature extractors were applied to the original MI signal and the decomposed signals generated by the MUPTT. The most valuable features from among the extracted feature vectors were selected using iterative neighborhood component analysis (INCA). In the classification phase, a one-dimensional nearest neighbor classifier with ten-fold cross-validation was used to obtain lead-wise results. The computed lead-wise results derived from all 12 leads of the same beat were input to the IMV algorithm to generate ten voted results. The most representative was chosen using a greedy technique to calculate the overall classification performance of the model. The HHF-MUPTT-based ECG beat classification model attained excellent performance, with the best lead-wise accuracy of 99.85% observed in Lead III and 99.94% classification accuracy using the IMV algorithm. The results confirmed the high MI classification ability of the presented computationally lightweight HHF-MUPTT-based model. |
Keywords | ECG signal processing; MI classifcation; Local binary pattern ; Statistical feature extraction |
ANZSRC Field of Research 2020 | 400306. Computational physiology |
Public Notes | Files associated with this item cannot be displayed due to copyright restrictions. |
Byline Affiliations | School of Business |
University of Technology Sydney | |
Sakarya University, Turkey | |
Firat University, Turkey | |
Bandirma Onyedi Eylul University, Turkiye | |
Ardahan University, Turkiye | |
Ngee Ann Polytechnic, Singapore | |
National Heart Centre, Singapore | |
Duke-NUS Medical School, Singapore | |
Singapore University of Social Sciences (SUSS), Singapore | |
Asia University, Taiwan |
Permalink -
https://research.usq.edu.au/item/z1v5z/multilevel-hybrid-accurate-handcrafted-model-for-myocardial-infarction-classification-using-ecg-signals
41
total views0
total downloads2
views this month0
downloads this month
Export as
Related outputs
Automated hip dysplasia detection using novel FlexiLBPHOG model with ultrasound images
Key, Sefa, Kurum, Huseyin, Esmez, Omer, Hafeez-Baig, Abdul, Hajiyeva, Rena, Dogan, Sengul and Tuncer, Turker. 2025. "Automated hip dysplasia detection using novel FlexiLBPHOG model with ultrasound images." Ain Shams Engineering Journal. 16 (1). https://doi.org/10.1016/j.asej.2024.103235Artificial Intelligence-Based Suicide Prevention and Prediction: A Systematic Review (2019-2023)
Atmakuru, Anirudh, Shahini, Alen, Chakraborty, Subrata, Seoni, Silvia, Salvi, Massimo, Hafeez-Baig, Abdul, Rashid, Sadaf, Tan, Ru San, Barua, Prabal Datta, Molinari, Filippo and Acharya, U Rajendra. 2025. "Artificial Intelligence-Based Suicide Prevention and Prediction: A Systematic Review (2019-2023)." Information Fusion. 114. https://doi.org/10.1016/j.inffus.2024.102673Explainable deeply-fused nets electricity demand prediction model: Factoring climate predictors for accuracy and deeper insights with probabilistic confidence interval and point-based forecasts
Ghimire, Sujan, AL-Musaylh, Mohanad S., Nguyen-Huy, Thong, Deo, Ravinesh C., Acharya, Rajendra, Casillas-Perez, David, Yaseen, Zaher Mundher and Salcedo-sanz, Sancho. 2025. "Explainable deeply-fused nets electricity demand prediction model: Factoring climate predictors for accuracy and deeper insights with probabilistic confidence interval and point-based forecasts." Applied Energy. 378 (Part A). https://doi.org/10.1016/j.apenergy.2024.124763AttentionPoolMobileNeXt: An automated construction damage detection model based on a new convolutional neural network and deep feature engineering models
Aydin, Mehmet, Barua, Prabal Datta, Chadalavada, Sreenivasulu, Dogan, Sengul, Tuncer, Turker, Chakraborty, Subrata and Acharya, Rajendra U.. 2025. "AttentionPoolMobileNeXt: An automated construction damage detection model based on a new convolutional neural network and deep feature engineering models." Multimedia Tools and Applications. 84 (4), pp. 1821-1843. https://doi.org/10.1007/s11042-024-19163-2Directed Lobish-based explainable feature engineering model with TTPat and CWINCA for EEG artifact classification
Tuncer, Turker, Dogan, Sengul, Baygin, Mehmet, Tasci, Irem, Mungen, Bulent, Tasci, Burak, Barua, Prabal Datta and Acharya, U.R.. 2024. "Directed Lobish-based explainable feature engineering model with TTPat and CWINCA for EEG artifact classification." Knowledge-Based Systems. 305. https://doi.org/10.1016/j.knosys.2024.112555Retinal Health Screening Using Artificial Intelligence with Digital Fundus Images: A Review of the Last Decade (2012-2023)
Islam, Saad, Deo, Ravinesh C., Barua, Prabal Datta, Soar, Jeffrey, Yu, Ping and Acharya, U. Rajendra. 2024. "Retinal Health Screening Using Artificial Intelligence with Digital Fundus Images: A Review of the Last Decade (2012-2023)." IEEE Access. 12, pp. 176630-176685. https://doi.org/10.1109/ACCESS.2024.3477420Automated EEG-based language detection using directed quantum pattern technique
Dogan, Sengul, Tuncer, Turker, Barua, Prabal Datta and Acharya, U.R.. 2024. "Automated EEG-based language detection using directed quantum pattern technique." Applied Soft Computing. 167 (Part A). https://doi.org/10.1016/j.asoc.2024.112301A Novel Hybrid Model for Automatic Non-Small Cell Lung Cancer Classification Using Histopathological Images
Katar, Oguzhan, Yildirim, Ozal, Tan, Ru-San and Acharya, U Rajendra. 2024. "A Novel Hybrid Model for Automatic Non-Small Cell Lung Cancer Classification Using Histopathological Images." Diagnostics. 14 (22). https://doi.org/10.3390/diagnostics14222497Synthetic Data Generation via Generative Adversarial Networks in Healthcare: A Systematic Review of Image- and Signal-Based Studies
Akpinar, Muhammed Halil, Sengur, Abdulkadir, Salvi, Massimo, Seoni, Silvia, Faust, Oliver, Mir, Hasan, Molinari,Filippo and Acharya, U. Rajendra. 2024. "Synthetic Data Generation via Generative Adversarial Networks in Healthcare: A Systematic Review of Image- and Signal-Based Studies." IEEE Open Journal of Engineering in Medicine and Biology. 6, pp. 183-192. https://doi.org/10.1109/OJEMB.2024.3508472RECOMED: A comprehensive pharmaceutical recommendation system
Zomorodi, Mariam, Ghodsollahee, Ismail, Martin, Jennifer H, Talley, Nicholas J, Salari, Vahid, Pławiak, Paweł, Rahimi, Kazem and Acharya, U.R.. 2024. "RECOMED: A comprehensive pharmaceutical recommendation system." Artificial Intelligence in Medicine. 157. https://doi.org/10.1016/j.artmed.2024.102981Artificial intelligence in assessing cardiovascular diseases and risk factors via retinal fundus images: A review of the last decade
Abdollahi, Mirsaeed, Jafarizadeh, Ali, Ghafouri-Asbagh, Amirhosein, Sobhi, Navid, Pourmoghtader, Keysan, Pedrammehr, Siamak, Asadi, Houshyar, Tan, Ru-San, Alizadehsani, Roohallah and Acharya, U. Rajendra. 2024. "Artificial intelligence in assessing cardiovascular diseases and risk factors via retinal fundus images: A review of the last decade." WIREs Data Mining and Knowledge Discovery. 14 (6). https://doi.org/10.1002/widm.1560Early prediction of sudden cardiac death using multimodal fusion of ECG Features extracted from Hilbert–Huang and wavelet transforms with explainable vision transformer and CNN models
Telangore, Hardik, Azad, Victor, Sharma, Manish, Bhurane, Ankit, Tan, Ru San and Acharya, U. Rajendra. 2024. "Early prediction of sudden cardiac death using multimodal fusion of ECG Features extracted from Hilbert–Huang and wavelet transforms with explainable vision transformer and CNN models." Computer Methods and Programs in Biomedicine. 257. https://doi.org/10.1016/j.cmpb.2024.108455A Pragmatic Approach to Fetal Monitoring via Cardiotocography Using Feature Elimination and Hyperparameter Optimization
Hardalac, Firat, Akmal, Haad, Ayturan, Kubilay, Acharya, U. Rajendra and Tan, Ru-San. 2024. "A Pragmatic Approach to Fetal Monitoring via Cardiotocography Using Feature Elimination and Hyperparameter Optimization." Interdisciplinary Sciences: Computational Life Sciences. 16 (4), pp. 882-906. https://doi.org/10.1007/s12539-024-00647-6Automated System for the Detection of Heart Anomalies Using Phonocardiograms: A Systematic Review
Gudigar, Anjan, Raghavendra, U., Maithri, M., Samanth, Jyothi, Inamdar, Mahesh Anil, Vidhya, V., Vicnesh, Jahmunah, Prabhu, Mukund A., Tan, Ru-San, Yeong, Chai Hong, Molinari, Filippo and Acharya, U. R.. 2024. "Automated System for the Detection of Heart Anomalies Using Phonocardiograms: A Systematic Review." IEEE Access. 12, pp. 138399-138428. https://doi.org/10.1109/ACCESS.2024.3465511