Application of data fusion for automated detection of children with developmental and mental disorders: A systematic review of the last decade
Article
Khare, Smith K., March, Sonja, Barua, Prabal Datta, Gadre, Vikram M. and Acharya, U. Rajendra. 2023. "Application of data fusion for automated detection of children with developmental and mental disorders: A systematic review of the last decade." Information Fusion. 99. https://doi.org/10.1016/j.inffus.2023.101898
Article Title | Application of data fusion for automated detection of children with developmental and mental disorders: A systematic review of the last decade |
---|---|
ERA Journal ID | 20983 |
Article Category | Article |
Authors | Khare, Smith K., March, Sonja, Barua, Prabal Datta, Gadre, Vikram M. and Acharya, U. Rajendra |
Journal Title | Information Fusion |
Journal Citation | 99 |
Article Number | 101898 |
Year | 2023 |
Publisher | Elsevier |
ISSN | 1566-2535 |
1872-6305 | |
Digital Object Identifier (DOI) | https://doi.org/10.1016/j.inffus.2023.101898 |
Web Address (URL) | https://www.sciencedirect.com/science/article/pii/S1566253523002142 |
Abstract | Mental health is a basic need for a sustainable and developing society. The prevalence and financial burden of mental illness have increased globally, and especially in response to community and worldwide pandemic events. Children suffering from such mental disorders find it difficult to cope with educational, occupational, personal, and societal developments, and treatments are not accessible to all. Advancements in technology have resulted in much research examining the use of artificial intelligence to detect or identify characteristics of mental illness. Therefore, this paper presents a systematic review of nine developmental and mental disorders (Autism spectrum disorder, Attention deficit hyperactivity disorder, Schizophrenia, Anxiety, Depression, Dyslexia, Post-traumatic stress disorder, Tourette syndrome, and Obsessive–compulsive disorder) prominent in children and adolescents. Our paper focuses on the automated detection of these developmental and mental disorders using physiological signals. This paper also presents a detailed discussion on signal analysis, feature engineering, and decision-making with their advantages, future directions and challenges on the papers published on mental disorders of children. We have presented the details of the dataset description, validation techniques, features extracted and decision-making models. The challenges and future directions present open research questions on signal or availability, uncertainty, explainability, and hardware implementation resources for signal analysis and machine or deep learning models. Finally, the main findings of this study are presented in the conclusion section. |
Keywords | Artificial intelligence; Mental health; Child; Machine learning; Deep learning; Electroencephalogram; Electrocardiogram; Electromyogram; Electrooculogram; Photoplethysmogram |
ANZSRC Field of Research 2020 | 400306. Computational physiology |
520101. Child and adolescent development | |
Byline Affiliations | Aarhus University, Denmark |
School of Psychology and Wellbeing | |
Centre for Health Research | |
School of Business | |
University of Technology Sydney | |
Indian Institute of Technology, India | |
School of Mathematics, Physics and Computing |
Permalink -
https://research.usq.edu.au/item/z1vw2/application-of-data-fusion-for-automated-detection-of-children-with-developmental-and-mental-disorders-a-systematic-review-of-the-last-decade
Download files
133
total views35
total downloads4
views this month4
downloads this month