Automated Diabetic Retinopathy Detection Using Horizontal and Vertical Patch Division-Based Pre-Trained DenseNET with Digital Fundus Images
Article
Article Title | Automated Diabetic Retinopathy Detection Using Horizontal and Vertical Patch Division-Based Pre-Trained DenseNET with |
---|---|
ERA Journal ID | 212275 |
Article Category | Article |
Authors | Kobat, Sabiha Gungor, Baygin, Nursena, Yusufoglu, Elif, Baygin, Mehmet, Barua, Prabal Datta, Dogan, Sengul, Yaman, Orhan, Celiker, Ulku, Yildirim, Hakan, Tan, Ru-San, Tuncer, Turker, Islam, Nazrul and Acharya, U. Rajendra |
Journal Title | Diagnostics |
Journal Citation | 12 (8) |
Article Number | 1975 |
Number of Pages | 19 |
Year | 2022 |
Publisher | MDPI AG |
Place of Publication | Switzerland |
ISSN | 2075-4418 |
Digital Object Identifier (DOI) | https://doi.org/10.3390/diagnostics12081975 |
Web Address (URL) | https://www.mdpi.com/2075-4418/12/8/1975 |
Abstract | Diabetic retinopathy (DR) is a common complication of diabetes that can lead to progressive vision loss. Regular surveillance with fundal photography, early diagnosis, and prompt intervention are paramount to reducing the incidence of DR-induced vision loss. However, manual interpretation of fundal photographs is subject to human error. In this study, a new method based on horizontal and vertical patch division was proposed for the automated classification of DR images on fundal photographs. The novel sides of this study are given as follows. We proposed a new non-fixed-size patch division model to obtain high classification results and collected a new fundus image dataset. Moreover, two datasets are used to test the model: a newly collected three-class (normal, non-proliferative DR, and proliferative DR) dataset comprising 2355 DR images and the established open-access five-class Asia Pacific Tele-Ophthalmology Society (APTOS) 2019 dataset comprising 3662 images. Two analysis scenarios, Case 1 and Case 2, with three (normal, non-proliferative DR, and proliferative DR) and five classes (normal, mild DR, moderate DR, severe DR, and proliferative DR), respectively, were derived from the APTOS 2019 dataset. These datasets and these cases have been used to demonstrate the general classification performance of our proposal. By applying transfer learning, the last fully connected and global average pooling layers of the DenseNet201 architecture were used to extract deep features from input DR images and each of the eight subdivided horizontal and vertical patches. The most discriminative features are then selected using neighborhood component analysis. These were fed as input to a standard shallow cubic support vector machine for classification. Our new DR dataset obtained 94.06% and 91.55% accuracy values for three-class classification with 80:20 hold-out validation and 10-fold cross-validation, respectively. As can be seen from steps of the proposed model, a new patch-based deep-feature engineering model has been proposed. The proposed deep-feature engineering model is a cognitive model, since it uses efficient methods in each phase. Similar excellent results were seen for three-class classification with the Case 1 dataset. In addition, the model attained 87.43% and 84.90% five-class classification accuracy rates using 80:20 hold-out validation and 10-fold cross-validation, respectively, on the Case 2 dataset, which outperformed prior DR classification studies based on the five-class APTOS 2019 dataset. Our model attained about >2% classification results compared to others. These findings demonstrate the accuracy and robustness of the proposed model for classification of DR images. |
Keywords | deep feature extraction; diabetic retinopathy; neighborhood component analysis; patch division; support vector machine; transfer learning |
Contains Sensitive Content | Does not contain sensitive content |
ANZSRC Field of Research 2020 | 400306. Computational physiology |
Byline Affiliations | Ngee Ann Polytechnic, Singapore |
Singapore University of Social Sciences (SUSS), Singapore | |
Asia University, Taiwan | |
Firat University, Turkey | |
Kafkas University, Turkiye | |
Elazig Fethi Sekin City Hospital, Turkey | |
Ardahan University, Turkiye | |
School of Business | |
University of Technology Sydney | |
National Heart Centre, Singapore | |
Duke-NUS Medical Centre, Singapore | |
Bangladesh Eye Hospital and Institute, Bangladesh |
https://research.usq.edu.au/item/yyw8y/automated-diabetic-retinopathy-detection-using-horizontal-and-vertical-patch-division-based-pre-trained-densenet-with-digital-fundus-images
Download files
90
total views31
total downloads1
views this month1
downloads this month
Export as
Related outputs
Automated hip dysplasia detection using novel FlexiLBPHOG model with ultrasound images
Key, Sefa, Kurum, Huseyin, Esmez, Omer, Hafeez-Baig, Abdul, Hajiyeva, Rena, Dogan, Sengul and Tuncer, Turker. 2025. "Automated hip dysplasia detection using novel FlexiLBPHOG model with ultrasound images." Ain Shams Engineering Journal. 16 (1). https://doi.org/10.1016/j.asej.2024.103235Artificial Intelligence-Based Suicide Prevention and Prediction: A Systematic Review (2019-2023)
Atmakuru, Anirudh, Shahini, Alen, Chakraborty, Subrata, Seoni, Silvia, Salvi, Massimo, Hafeez-Baig, Abdul, Rashid, Sadaf, Tan, Ru San, Barua, Prabal Datta, Molinari, Filippo and Acharya, U Rajendra. 2025. "Artificial Intelligence-Based Suicide Prevention and Prediction: A Systematic Review (2019-2023)." Information Fusion. 114. https://doi.org/10.1016/j.inffus.2024.102673Explainable deeply-fused nets electricity demand prediction model: Factoring climate predictors for accuracy and deeper insights with probabilistic confidence interval and point-based forecasts
Ghimire, Sujan, AL-Musaylh, Mohanad S., Nguyen-Huy, Thong, Deo, Ravinesh C., Acharya, Rajendra, Casillas-Perez, David, Yaseen, Zaher Mundher and Salcedo-sanz, Sancho. 2025. "Explainable deeply-fused nets electricity demand prediction model: Factoring climate predictors for accuracy and deeper insights with probabilistic confidence interval and point-based forecasts." Applied Energy. 378 (Part A). https://doi.org/10.1016/j.apenergy.2024.124763AttentionPoolMobileNeXt: An automated construction damage detection model based on a new convolutional neural network and deep feature engineering models
Aydin, Mehmet, Barua, Prabal Datta, Chadalavada, Sreenivasulu, Dogan, Sengul, Tuncer, Turker, Chakraborty, Subrata and Acharya, Rajendra U.. 2025. "AttentionPoolMobileNeXt: An automated construction damage detection model based on a new convolutional neural network and deep feature engineering models." Multimedia Tools and Applications. 84 (4), pp. 1821-1843. https://doi.org/10.1007/s11042-024-19163-2Directed Lobish-based explainable feature engineering model with TTPat and CWINCA for EEG artifact classification
Tuncer, Turker, Dogan, Sengul, Baygin, Mehmet, Tasci, Irem, Mungen, Bulent, Tasci, Burak, Barua, Prabal Datta and Acharya, U.R.. 2024. "Directed Lobish-based explainable feature engineering model with TTPat and CWINCA for EEG artifact classification." Knowledge-Based Systems. 305. https://doi.org/10.1016/j.knosys.2024.112555Retinal Health Screening Using Artificial Intelligence with Digital Fundus Images: A Review of the Last Decade (2012-2023)
Islam, Saad, Deo, Ravinesh C., Barua, Prabal Datta, Soar, Jeffrey, Yu, Ping and Acharya, U. Rajendra. 2024. "Retinal Health Screening Using Artificial Intelligence with Digital Fundus Images: A Review of the Last Decade (2012-2023)." IEEE Access. 12, pp. 176630-176685. https://doi.org/10.1109/ACCESS.2024.3477420Automated EEG-based language detection using directed quantum pattern technique
Dogan, Sengul, Tuncer, Turker, Barua, Prabal Datta and Acharya, U.R.. 2024. "Automated EEG-based language detection using directed quantum pattern technique." Applied Soft Computing. 167 (Part A). https://doi.org/10.1016/j.asoc.2024.112301A Novel Hybrid Model for Automatic Non-Small Cell Lung Cancer Classification Using Histopathological Images
Katar, Oguzhan, Yildirim, Ozal, Tan, Ru-San and Acharya, U Rajendra. 2024. "A Novel Hybrid Model for Automatic Non-Small Cell Lung Cancer Classification Using Histopathological Images." Diagnostics. 14 (22). https://doi.org/10.3390/diagnostics14222497Synthetic Data Generation via Generative Adversarial Networks in Healthcare: A Systematic Review of Image- and Signal-Based Studies
Akpinar, Muhammed Halil, Sengur, Abdulkadir, Salvi, Massimo, Seoni, Silvia, Faust, Oliver, Mir, Hasan, Molinari,Filippo and Acharya, U. Rajendra. 2024. "Synthetic Data Generation via Generative Adversarial Networks in Healthcare: A Systematic Review of Image- and Signal-Based Studies." IEEE Open Journal of Engineering in Medicine and Biology. 6, pp. 183-192. https://doi.org/10.1109/OJEMB.2024.3508472RECOMED: A comprehensive pharmaceutical recommendation system
Zomorodi, Mariam, Ghodsollahee, Ismail, Martin, Jennifer H, Talley, Nicholas J, Salari, Vahid, Pławiak, Paweł, Rahimi, Kazem and Acharya, U.R.. 2024. "RECOMED: A comprehensive pharmaceutical recommendation system." Artificial Intelligence in Medicine. 157. https://doi.org/10.1016/j.artmed.2024.102981Artificial intelligence in assessing cardiovascular diseases and risk factors via retinal fundus images: A review of the last decade
Abdollahi, Mirsaeed, Jafarizadeh, Ali, Ghafouri-Asbagh, Amirhosein, Sobhi, Navid, Pourmoghtader, Keysan, Pedrammehr, Siamak, Asadi, Houshyar, Tan, Ru-San, Alizadehsani, Roohallah and Acharya, U. Rajendra. 2024. "Artificial intelligence in assessing cardiovascular diseases and risk factors via retinal fundus images: A review of the last decade." WIREs Data Mining and Knowledge Discovery. 14 (6). https://doi.org/10.1002/widm.1560Early prediction of sudden cardiac death using multimodal fusion of ECG Features extracted from Hilbert–Huang and wavelet transforms with explainable vision transformer and CNN models
Telangore, Hardik, Azad, Victor, Sharma, Manish, Bhurane, Ankit, Tan, Ru San and Acharya, U. Rajendra. 2024. "Early prediction of sudden cardiac death using multimodal fusion of ECG Features extracted from Hilbert–Huang and wavelet transforms with explainable vision transformer and CNN models." Computer Methods and Programs in Biomedicine. 257. https://doi.org/10.1016/j.cmpb.2024.108455A Pragmatic Approach to Fetal Monitoring via Cardiotocography Using Feature Elimination and Hyperparameter Optimization
Hardalac, Firat, Akmal, Haad, Ayturan, Kubilay, Acharya, U. Rajendra and Tan, Ru-San. 2024. "A Pragmatic Approach to Fetal Monitoring via Cardiotocography Using Feature Elimination and Hyperparameter Optimization." Interdisciplinary Sciences: Computational Life Sciences. 16 (4), pp. 882-906. https://doi.org/10.1007/s12539-024-00647-6Automated System for the Detection of Heart Anomalies Using Phonocardiograms: A Systematic Review
Gudigar, Anjan, Raghavendra, U., Maithri, M., Samanth, Jyothi, Inamdar, Mahesh Anil, Vidhya, V., Vicnesh, Jahmunah, Prabhu, Mukund A., Tan, Ru-San, Yeong, Chai Hong, Molinari, Filippo and Acharya, U. R.. 2024. "Automated System for the Detection of Heart Anomalies Using Phonocardiograms: A Systematic Review." IEEE Access. 12, pp. 138399-138428. https://doi.org/10.1109/ACCESS.2024.3465511