Swin-LBP: a competitive feature engineering model for urine sediment classification
Article
Erten, Mehmet, Barua, Praba Datta, Tuncer, Ilknur, Dogan, Sengul, Baygin, Mehmet, Tuncer, Turker, Tan, Ru-San and Acharya, U. Rajendra. 2023. "Swin-LBP: a competitive feature engineering model for urine sediment classification." Neural Computing and Applications. 35 (29), pp. 21621-21632. https://doi.org/10.1007/s00521-023-08919-w
Article Title | Swin-LBP: a competitive feature engineering model for urine sediment classification |
---|---|
ERA Journal ID | 18089 |
Article Category | Article |
Authors | Erten, Mehmet, Barua, Praba Datta, Tuncer, Ilknur, Dogan, Sengul, Baygin, Mehmet, Tuncer, Turker, Tan, Ru-San and Acharya, U. Rajendra |
Journal Title | Neural Computing and Applications |
Journal Citation | 35 (29), pp. 21621-21632 |
Number of Pages | 12 |
Year | 2023 |
Publisher | Springer |
Place of Publication | United Kingdom |
ISSN | 0941-0643 |
1433-3058 | |
Digital Object Identifier (DOI) | https://doi.org/10.1007/s00521-023-08919-w |
Web Address (URL) | https://link.springer.com/article/10.1007/s00521-023-08919-w |
Abstract | Automated urine sediment analysis has become an essential part of diagnosing, monitoring, and treating various diseases that affect the urinary tract and kidneys. However, manual analysis of urine sediment is time-consuming and prone to human bias, and hence there is a need for an automated urine sediment analysis systems using machine learning algorithms. In this work, we propose Swin-LBP, a handcrafted urine sediment classification model using the Swin transformer architecture and local binary pattern (LBP) technique to achieve high classification performance. The Swin-LBP model comprises five phases: preprocessing of input images using shifted windows-based patch division, six-layered LBP-based feature extraction, neighborhood component analysis-based feature selection, support vector machine-based calculation of six predicted vectors, and mode function-based majority voting of the six predicted vectors to generate four additional voted vectors. Our newly reconstructed urine sediment image dataset, consisting of 7 distinct classes, was utilized for training and testing our model. Our proposed model has several advantages over existing automated urinalysis systems. Firstly, we used a feature engineering model that enables high classification performance with linear complexity. This means that it can provide accurate results quickly and efficiently, making it an attractive alternative to time-consuming and biased manual urine sediment analysis. Additionally, our model outperformed existing deep learning models developed on the same source urine sediment image dataset, indicating its superiority in urine sediment classification. Our model achieved 92.60% accuracy for 7-class urine sediment classification, with an average precision of 92.05%. These results demonstrate that the proposed Swin-LBP model can provide a reliable and efficient solution for the diagnosis, surveillance, and therapeutic monitoring of various diseases affecting the kidneys and urinary tract. The proposed model's accuracy, speed, and efficiency make it an attractive option for clinical laboratories and healthcare facilities. In conclusion, the Swin-LBP model has the potential to revolutionize urine sediment analysis and improve patient outcomes in the diagnosis and treatment of urinary tract and kidney diseases. |
Keywords | Biomedical image classification; Urinary analysis; Urinary sediment classification; Swin-LBP |
ANZSRC Field of Research 2020 | 400306. Computational physiology |
Public Notes | Files associated with this item cannot be displayed due to copyright restrictions. |
Byline Affiliations | Elazig Fethi Sekin City Hospital, Turkiye |
School of Business | |
Interior Ministry, Turkiye | |
Firat University, Turkey | |
Erzurum Technical University, Turkey | |
National Heart Centre, Singapore | |
School of Mathematics, Physics and Computing |
Permalink -
https://research.usq.edu.au/item/z1v86/swin-lbp-a-competitive-feature-engineering-model-for-urine-sediment-classification
61
total views0
total downloads5
views this month0
downloads this month