Automated EEG sentence classification using novel dynamic-sized binary pattern and multilevel discrete wavelet transform techniques with TSEEG database
Article
Article Title | Automated EEG sentence classification using novel dynamic-sized binary pattern and multilevel discrete wavelet transform techniques with TSEEG database |
---|---|
ERA Journal ID | 3391 |
Article Category | Article |
Authors | Barua, Prabal Datta, Keles, Tugce, Dogan, Sengul, Baygin, Mehmet, Tuncer, Turker, Demir, Caner Feyzi, Fujita, Hamido, Tan, Ru-San, Ooi, Chui Ping and Acharya, U. Rajendra |
Journal Title | Biomedical Signal Processing and Control |
Journal Citation | 79 (Part 1) |
Article Number | 104055 |
Number of Pages | 13 |
Year | 2023 |
Publisher | Elsevier |
Place of Publication | Netherlands |
ISSN | 1746-8094 |
Digital Object Identifier (DOI) | https://doi.org/10.1016/j.bspc.2022.104055 |
Web Address (URL) | https://www.sciencedirect.com/science/article/pii/S1746809422005274 |
Abstract | Electroencephalography (EEG) signal is an important physiological signal commonly used in machine learning to decode brain activities, including imagined words and sentences. We aimed to develop an automated lightweight EEG signal-based sentence classification model using a novel dynamic-sized binary pattern (DSBP) textural feature extractor and iterative multi-classifiers based majority voting (IMCMV) algorithm for iterative voting of results calculated using different classifiers for multi-channel EEG signal inputs. A new Turkish sentence EEG(TSEEG) was prospectively acquired. It comprised of 15-second 14-channel EEG signals recorded when 40 volunteers (for each dataset, we collected EEG signals from 20 participants) were either shown or read corresponding to demonstration or listening modes, respectively. Hence, 20 standardized commonly used sentences were obtained in their native Turkish language. The developed sentence classification model extracted 5,400 multilevel deep features from each channel EEG signal segment using the novel DSBP, statistical features, and multilevel discrete wavelet transform (MDWT). 512 features were then chosen using the neighborhood component analysis selection function. k-nearest neighbor and support vector machine classifiers were used to calculate two prediction vectors from the selected features using tenfold cross-validation, i.e., 28 vectors were generated for each 14-channel EEG recording. Finally, the best general voted results were determined for increasing numbers of iteratively calculated prediction vectors using the novel IMCMV algorithm. Channel-wise and voted results were found to be excellent for sentence classification for the TSEEG dataset in both demonstration and listening modes. The DSBP-IMCMV-based model attained the best general classification rates of 98.81% and 98.19% in the demonstration and listening modes, respectively. |
Keywords | Dynamic sized binary pattern; EEG sentence classification; Iterative multi-classifiers based majority voting; Machine learning; Neighborhood component analysis |
Contains Sensitive Content | Does not contain sensitive content |
Public Notes | Files associated with this item cannot be displayed due to copyright restrictions. |
Funder | Türkiye Bilimsel ve Teknolojik Araştırma Kurumu |
Byline Affiliations | School of Business |
University of Technology Sydney | |
Firat University, Turkey | |
Ardahan University, Turkiye | |
HUTECH University of Technology, Vietnam | |
University of Granada, Spain | |
Iwate Prefectural University, Japan | |
National Heart Centre, Singapore | |
Duke-NUS Medical School, Singapore | |
Singapore University of Social Sciences (SUSS), Singapore | |
School of Mathematics, Physics and Computing | |
Institute for Life Sciences and the Environment | |
Centre for Health Research |
https://research.usq.edu.au/item/yy8y3/automated-eeg-sentence-classification-using-novel-dynamic-sized-binary-pattern-and-multilevel-discrete-wavelet-transform-techniques-with-tseeg-database
98
total views141
total downloads4
views this month0
downloads this month
Export as
Related outputs
Automated hip dysplasia detection using novel FlexiLBPHOG model with ultrasound images
Key, Sefa, Kurum, Huseyin, Esmez, Omer, Hafeez-Baig, Abdul, Hajiyeva, Rena, Dogan, Sengul and Tuncer, Turker. 2025. "Automated hip dysplasia detection using novel FlexiLBPHOG model with ultrasound images." Ain Shams Engineering Journal. 16 (1). https://doi.org/10.1016/j.asej.2024.103235Artificial Intelligence-Based Suicide Prevention and Prediction: A Systematic Review (2019-2023)
Atmakuru, Anirudh, Shahini, Alen, Chakraborty, Subrata, Seoni, Silvia, Salvi, Massimo, Hafeez-Baig, Abdul, Rashid, Sadaf, Tan, Ru San, Barua, Prabal Datta, Molinari, Filippo and Acharya, U Rajendra. 2025. "Artificial Intelligence-Based Suicide Prevention and Prediction: A Systematic Review (2019-2023)." Information Fusion. 114. https://doi.org/10.1016/j.inffus.2024.102673Explainable deeply-fused nets electricity demand prediction model: Factoring climate predictors for accuracy and deeper insights with probabilistic confidence interval and point-based forecasts
Ghimire, Sujan, AL-Musaylh, Mohanad S., Nguyen-Huy, Thong, Deo, Ravinesh C., Acharya, Rajendra, Casillas-Perez, David, Yaseen, Zaher Mundher and Salcedo-sanz, Sancho. 2025. "Explainable deeply-fused nets electricity demand prediction model: Factoring climate predictors for accuracy and deeper insights with probabilistic confidence interval and point-based forecasts." Applied Energy. 378 (Part A). https://doi.org/10.1016/j.apenergy.2024.124763AttentionPoolMobileNeXt: An automated construction damage detection model based on a new convolutional neural network and deep feature engineering models
Aydin, Mehmet, Barua, Prabal Datta, Chadalavada, Sreenivasulu, Dogan, Sengul, Tuncer, Turker, Chakraborty, Subrata and Acharya, Rajendra U.. 2025. "AttentionPoolMobileNeXt: An automated construction damage detection model based on a new convolutional neural network and deep feature engineering models." Multimedia Tools and Applications. 84 (4), pp. 1821-1843. https://doi.org/10.1007/s11042-024-19163-2Directed Lobish-based explainable feature engineering model with TTPat and CWINCA for EEG artifact classification
Tuncer, Turker, Dogan, Sengul, Baygin, Mehmet, Tasci, Irem, Mungen, Bulent, Tasci, Burak, Barua, Prabal Datta and Acharya, U.R.. 2024. "Directed Lobish-based explainable feature engineering model with TTPat and CWINCA for EEG artifact classification." Knowledge-Based Systems. 305. https://doi.org/10.1016/j.knosys.2024.112555Retinal Health Screening Using Artificial Intelligence with Digital Fundus Images: A Review of the Last Decade (2012-2023)
Islam, Saad, Deo, Ravinesh C., Barua, Prabal Datta, Soar, Jeffrey, Yu, Ping and Acharya, U. Rajendra. 2024. "Retinal Health Screening Using Artificial Intelligence with Digital Fundus Images: A Review of the Last Decade (2012-2023)." IEEE Access. 12, pp. 176630-176685. https://doi.org/10.1109/ACCESS.2024.3477420Automated EEG-based language detection using directed quantum pattern technique
Dogan, Sengul, Tuncer, Turker, Barua, Prabal Datta and Acharya, U.R.. 2024. "Automated EEG-based language detection using directed quantum pattern technique." Applied Soft Computing. 167 (Part A). https://doi.org/10.1016/j.asoc.2024.112301A Novel Hybrid Model for Automatic Non-Small Cell Lung Cancer Classification Using Histopathological Images
Katar, Oguzhan, Yildirim, Ozal, Tan, Ru-San and Acharya, U Rajendra. 2024. "A Novel Hybrid Model for Automatic Non-Small Cell Lung Cancer Classification Using Histopathological Images." Diagnostics. 14 (22). https://doi.org/10.3390/diagnostics14222497Synthetic Data Generation via Generative Adversarial Networks in Healthcare: A Systematic Review of Image- and Signal-Based Studies
Akpinar, Muhammed Halil, Sengur, Abdulkadir, Salvi, Massimo, Seoni, Silvia, Faust, Oliver, Mir, Hasan, Molinari,Filippo and Acharya, U. Rajendra. 2024. "Synthetic Data Generation via Generative Adversarial Networks in Healthcare: A Systematic Review of Image- and Signal-Based Studies." IEEE Open Journal of Engineering in Medicine and Biology. 6, pp. 183-192. https://doi.org/10.1109/OJEMB.2024.3508472RECOMED: A comprehensive pharmaceutical recommendation system
Zomorodi, Mariam, Ghodsollahee, Ismail, Martin, Jennifer H, Talley, Nicholas J, Salari, Vahid, Pławiak, Paweł, Rahimi, Kazem and Acharya, U.R.. 2024. "RECOMED: A comprehensive pharmaceutical recommendation system." Artificial Intelligence in Medicine. 157. https://doi.org/10.1016/j.artmed.2024.102981Artificial intelligence in assessing cardiovascular diseases and risk factors via retinal fundus images: A review of the last decade
Abdollahi, Mirsaeed, Jafarizadeh, Ali, Ghafouri-Asbagh, Amirhosein, Sobhi, Navid, Pourmoghtader, Keysan, Pedrammehr, Siamak, Asadi, Houshyar, Tan, Ru-San, Alizadehsani, Roohallah and Acharya, U. Rajendra. 2024. "Artificial intelligence in assessing cardiovascular diseases and risk factors via retinal fundus images: A review of the last decade." WIREs Data Mining and Knowledge Discovery. 14 (6). https://doi.org/10.1002/widm.1560Early prediction of sudden cardiac death using multimodal fusion of ECG Features extracted from Hilbert–Huang and wavelet transforms with explainable vision transformer and CNN models
Telangore, Hardik, Azad, Victor, Sharma, Manish, Bhurane, Ankit, Tan, Ru San and Acharya, U. Rajendra. 2024. "Early prediction of sudden cardiac death using multimodal fusion of ECG Features extracted from Hilbert–Huang and wavelet transforms with explainable vision transformer and CNN models." Computer Methods and Programs in Biomedicine. 257. https://doi.org/10.1016/j.cmpb.2024.108455A Pragmatic Approach to Fetal Monitoring via Cardiotocography Using Feature Elimination and Hyperparameter Optimization
Hardalac, Firat, Akmal, Haad, Ayturan, Kubilay, Acharya, U. Rajendra and Tan, Ru-San. 2024. "A Pragmatic Approach to Fetal Monitoring via Cardiotocography Using Feature Elimination and Hyperparameter Optimization." Interdisciplinary Sciences: Computational Life Sciences. 16 (4), pp. 882-906. https://doi.org/10.1007/s12539-024-00647-6Automated System for the Detection of Heart Anomalies Using Phonocardiograms: A Systematic Review
Gudigar, Anjan, Raghavendra, U., Maithri, M., Samanth, Jyothi, Inamdar, Mahesh Anil, Vidhya, V., Vicnesh, Jahmunah, Prabhu, Mukund A., Tan, Ru-San, Yeong, Chai Hong, Molinari, Filippo and Acharya, U. R.. 2024. "Automated System for the Detection of Heart Anomalies Using Phonocardiograms: A Systematic Review." IEEE Access. 12, pp. 138399-138428. https://doi.org/10.1109/ACCESS.2024.3465511