An explainable and interpretable model for attention deficit hyperactivity disorder in children using EEG signals
Article
Article Title | An explainable and interpretable model for attention deficit hyperactivity disorder in children using EEG signals |
---|---|
ERA Journal ID | 5040 |
Article Category | Article |
Authors | Khare, Smith K. and Acharya, U. Rajendra |
Journal Title | Computers in Biology and Medicine |
Journal Citation | 155 |
Article Number | 106676 |
Number of Pages | 16 |
Year | 2023 |
Publisher | Elsevier |
Place of Publication | United Kingdom |
ISSN | 0010-4825 |
1879-0534 | |
Digital Object Identifier (DOI) | https://doi.org/10.1016/j.compbiomed.2023.106676 |
Web Address (URL) | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85148686206&doi=10.1016%2fj.compbiomed.2023.106676&partnerID=40&md5=f96b2c64b5721d345c8f3f28562de802 |
Abstract | Background: Method: Results: Conclusions: |
Keywords | Attention deficit hyperactivity disorder; Explainable machine learning; Variational mode decomposition; Interpretable machine learning; Electroencephalography |
ANZSRC Field of Research 2020 | 400306. Computational physiology |
Byline Affiliations | Aarhus University, Denmark |
School of Mathematics, Physics and Computing | |
Singapore University of Social Sciences (SUSS), Singapore | |
Asia University, Taiwan | |
Kumamoto University, Japan | |
University of Malaya, Malaysia |
https://research.usq.edu.au/item/z1vvw/an-explainable-and-interpretable-model-for-attention-deficit-hyperactivity-disorder-in-children-using-eeg-signals
Download files
65
total views37
total downloads0
views this month0
downloads this month