EfDenseNet: Automated Pulmonary Hypertension Detection Model Based on EfficientNetb0 and DenseNet201 Using CT Images
Article
Article Title | EfDenseNet: Automated Pulmonary Hypertension Detection Model Based on EfficientNetb0 and DenseNet201 Using CT Images |
---|---|
ERA Journal ID | 210567 |
Article Category | Article |
Authors | Kivrak, Tarik, Nayak, Jagadish, Gelen, Mehmet Ali, Barua, Prabal Datta, Baygin, Mehmet, Pamukcu, Hilal Erken, Dogan, Sengul, Tuncer, Turker and Acharya, U. Rajendra |
Journal Title | IEEE Access |
Journal Citation | 11, pp. 142711-142724 |
Number of Pages | 14 |
Year | 2023 |
Publisher | IEEE (Institute of Electrical and Electronics Engineers) |
Place of Publication | United States |
ISSN | 2169-3536 |
Digital Object Identifier (DOI) | https://doi.org/10.1109/ACCESS.2023.3338228 |
Web Address (URL) | https://ieeexplore.ieee.org/document/10336792 |
Abstract | Pulmonary hypertension (PH) is a chronic and progressive disease. We introduced a novel automated self-organized feature engineering architecture for PH detection, which was trained and refined using a new thoracic CT image dataset. This study’s dataset includes 807 transverse contrast-enhanced CT images from 313 patients, categorized into four groups: Group 1 with 20 mmHg ≤ mean pulmonary artery pressure (mPAP) < 25 mmHg; Group 2 with 25 mmHg ≤ mPAP ≤ 30 mmHg; Group 3 where mPAP > 30 mmHg; and a control group with no PH. Our model consists of four primary stages: (i) generation of features based on combinations from nested patches, (ii) feature selection, (iii) classification and (iv) majority voting. CT images were segmented into nested patches, each being processed through pretrained EfficientNetB0 and DenseNet201 to derive four deep feature vectors, utilizing both the global average pooling and fully connected layers of these networks. These four extracted features underwent combinatorial operations, resulting in 15 feature vectors. Subsequently, these vectors were introduced to neighborhood component analysis, ReliefF, and Chi2 feature selectors. This process yielded 45 refined feature vectors with diminished data dimensions. These selected vectors were then processed through a support vector machine and k-nearest neighbors classifiers, producing 90 predictive vectors. By applying mode-based iterative majority voting to these vectors, an additional 88 voted prediction vectors were generated, leading to a total of 178 classifier-generated and voted prediction vectors. The optimal classification result was selected from these 178 vectors. With the use of 10-fold cross-validation, our model achieved a remarkable 97.27% overall accuracy for the 4-class classification on the study dataset. Owing to its reduced time complexity, this model is practical for CT-based PH screenings. |
Keywords | Artificial intelligence, computed tomography, mean pulmonary arterial pressure, pulmonary hypertension |
Contains Sensitive Content | Does not contain sensitive content |
ANZSRC Field of Research 2020 | 320101. Cardiology (incl. cardiovascular diseases) |
Byline Affiliations | Firat University Hospital, Turkey |
Birla Institute of Technology and Science, United Arab Emirates | |
School of Business | |
Erzurum Technical University, Turkey | |
Etlik Education and Training Hospital, Turkey | |
Firat University, Turkey | |
School of Mathematics, Physics and Computing | |
Centre for Health Research |
https://research.usq.edu.au/item/zq352/efdensenet-automated-pulmonary-hypertension-detection-model-based-on-efficientnetb0-and-densenet201-using-ct-images
Download files
Published Version
EfDenseNet_Automated_Pulmonary_Hypertension_Detection_Model_Based_on_EfficientNetb0_and_DenseNet201_Using_CT_Images.pdf | ||
License: CC BY-NC-ND 4.0 | ||
File access level: Anyone |
1
total views1
total downloads1
views this month1
downloads this month
Export as
Related outputs
Automated hip dysplasia detection using novel FlexiLBPHOG model with ultrasound images
Key, Sefa, Kurum, Huseyin, Esmez, Omer, Hafeez-Baig, Abdul, Hajiyeva, Rena, Dogan, Sengul and Tuncer, Turker. 2025. "Automated hip dysplasia detection using novel FlexiLBPHOG model with ultrasound images." Ain Shams Engineering Journal. 16 (1). https://doi.org/10.1016/j.asej.2024.103235Artificial Intelligence-Based Suicide Prevention and Prediction: A Systematic Review (2019-2023)
Atmakuru, Anirudh, Shahini, Alen, Chakraborty, Subrata, Seoni, Silvia, Salvi, Massimo, Hafeez-Baig, Abdul, Rashid, Sadaf, Tan, Ru San, Barua, Prabal Datta, Molinari, Filippo and Acharya, U Rajendra. 2025. "Artificial Intelligence-Based Suicide Prevention and Prediction: A Systematic Review (2019-2023)." Information Fusion. 114. https://doi.org/10.1016/j.inffus.2024.102673Explainable deeply-fused nets electricity demand prediction model: Factoring climate predictors for accuracy and deeper insights with probabilistic confidence interval and point-based forecasts
Ghimire, Sujan, AL-Musaylh, Mohanad S., Nguyen-Huy, Thong, Deo, Ravinesh C., Acharya, Rajendra, Casillas-Perez, David, Yaseen, Zaher Mundher and Salcedo-sanz, Sancho. 2025. "Explainable deeply-fused nets electricity demand prediction model: Factoring climate predictors for accuracy and deeper insights with probabilistic confidence interval and point-based forecasts." Applied Energy. 378 (Part A). https://doi.org/10.1016/j.apenergy.2024.124763AttentionPoolMobileNeXt: An automated construction damage detection model based on a new convolutional neural network and deep feature engineering models
Aydin, Mehmet, Barua, Prabal Datta, Chadalavada, Sreenivasulu, Dogan, Sengul, Tuncer, Turker, Chakraborty, Subrata and Acharya, Rajendra U.. 2025. "AttentionPoolMobileNeXt: An automated construction damage detection model based on a new convolutional neural network and deep feature engineering models." Multimedia Tools and Applications. 84 (4), pp. 1821-1843. https://doi.org/10.1007/s11042-024-19163-2Directed Lobish-based explainable feature engineering model with TTPat and CWINCA for EEG artifact classification
Tuncer, Turker, Dogan, Sengul, Baygin, Mehmet, Tasci, Irem, Mungen, Bulent, Tasci, Burak, Barua, Prabal Datta and Acharya, U.R.. 2024. "Directed Lobish-based explainable feature engineering model with TTPat and CWINCA for EEG artifact classification." Knowledge-Based Systems. 305. https://doi.org/10.1016/j.knosys.2024.112555Retinal Health Screening Using Artificial Intelligence with Digital Fundus Images: A Review of the Last Decade (2012-2023)
Islam, Saad, Deo, Ravinesh C., Barua, Prabal Datta, Soar, Jeffrey, Yu, Ping and Acharya, U. Rajendra. 2024. "Retinal Health Screening Using Artificial Intelligence with Digital Fundus Images: A Review of the Last Decade (2012-2023)." IEEE Access. 12, pp. 176630-176685. https://doi.org/10.1109/ACCESS.2024.3477420Automated EEG-based language detection using directed quantum pattern technique
Dogan, Sengul, Tuncer, Turker, Barua, Prabal Datta and Acharya, U.R.. 2024. "Automated EEG-based language detection using directed quantum pattern technique." Applied Soft Computing. 167 (Part A). https://doi.org/10.1016/j.asoc.2024.112301A Novel Hybrid Model for Automatic Non-Small Cell Lung Cancer Classification Using Histopathological Images
Katar, Oguzhan, Yildirim, Ozal, Tan, Ru-San and Acharya, U Rajendra. 2024. "A Novel Hybrid Model for Automatic Non-Small Cell Lung Cancer Classification Using Histopathological Images." Diagnostics. 14 (22). https://doi.org/10.3390/diagnostics14222497Synthetic Data Generation via Generative Adversarial Networks in Healthcare: A Systematic Review of Image- and Signal-Based Studies
Akpinar, Muhammed Halil, Sengur, Abdulkadir, Salvi, Massimo, Seoni, Silvia, Faust, Oliver, Mir, Hasan, Molinari,Filippo and Acharya, U. Rajendra. 2024. "Synthetic Data Generation via Generative Adversarial Networks in Healthcare: A Systematic Review of Image- and Signal-Based Studies." IEEE Open Journal of Engineering in Medicine and Biology. 6, pp. 183-192. https://doi.org/10.1109/OJEMB.2024.3508472RECOMED: A comprehensive pharmaceutical recommendation system
Zomorodi, Mariam, Ghodsollahee, Ismail, Martin, Jennifer H, Talley, Nicholas J, Salari, Vahid, Pławiak, Paweł, Rahimi, Kazem and Acharya, U.R.. 2024. "RECOMED: A comprehensive pharmaceutical recommendation system." Artificial Intelligence in Medicine. 157. https://doi.org/10.1016/j.artmed.2024.102981Artificial intelligence in assessing cardiovascular diseases and risk factors via retinal fundus images: A review of the last decade
Abdollahi, Mirsaeed, Jafarizadeh, Ali, Ghafouri-Asbagh, Amirhosein, Sobhi, Navid, Pourmoghtader, Keysan, Pedrammehr, Siamak, Asadi, Houshyar, Tan, Ru-San, Alizadehsani, Roohallah and Acharya, U. Rajendra. 2024. "Artificial intelligence in assessing cardiovascular diseases and risk factors via retinal fundus images: A review of the last decade." WIREs Data Mining and Knowledge Discovery. 14 (6). https://doi.org/10.1002/widm.1560Early prediction of sudden cardiac death using multimodal fusion of ECG Features extracted from Hilbert–Huang and wavelet transforms with explainable vision transformer and CNN models
Telangore, Hardik, Azad, Victor, Sharma, Manish, Bhurane, Ankit, Tan, Ru San and Acharya, U. Rajendra. 2024. "Early prediction of sudden cardiac death using multimodal fusion of ECG Features extracted from Hilbert–Huang and wavelet transforms with explainable vision transformer and CNN models." Computer Methods and Programs in Biomedicine. 257. https://doi.org/10.1016/j.cmpb.2024.108455A Pragmatic Approach to Fetal Monitoring via Cardiotocography Using Feature Elimination and Hyperparameter Optimization
Hardalac, Firat, Akmal, Haad, Ayturan, Kubilay, Acharya, U. Rajendra and Tan, Ru-San. 2024. "A Pragmatic Approach to Fetal Monitoring via Cardiotocography Using Feature Elimination and Hyperparameter Optimization." Interdisciplinary Sciences: Computational Life Sciences. 16 (4), pp. 882-906. https://doi.org/10.1007/s12539-024-00647-6Automated System for the Detection of Heart Anomalies Using Phonocardiograms: A Systematic Review
Gudigar, Anjan, Raghavendra, U., Maithri, M., Samanth, Jyothi, Inamdar, Mahesh Anil, Vidhya, V., Vicnesh, Jahmunah, Prabhu, Mukund A., Tan, Ru-San, Yeong, Chai Hong, Molinari, Filippo and Acharya, U. R.. 2024. "Automated System for the Detection of Heart Anomalies Using Phonocardiograms: A Systematic Review." IEEE Access. 12, pp. 138399-138428. https://doi.org/10.1109/ACCESS.2024.3465511