An automated earthquake classification model based on a new butterfly pattern using seismic signals
Article
Ozkaya, Suat Gokhan, Baygin, Mehmet, Barua, Prabal Datta, Tuncer, Turker, Dogan, Sengul, Chakraborty, Subrata and Acharya, U. Rajendra. 2024. "An automated earthquake classification model based on a new butterfly pattern using seismic signals." Expert Systems with Applications. 238 (Part D). https://doi.org/10.1016/j.eswa.2023.122079
Article Title | An automated earthquake classification model based on a new butterfly pattern using seismic signals |
---|---|
ERA Journal ID | 17852 |
Article Category | Article |
Authors | Ozkaya, Suat Gokhan, Baygin, Mehmet, Barua, Prabal Datta, Tuncer, Turker, Dogan, Sengul, Chakraborty, Subrata and Acharya, U. Rajendra |
Journal Title | Expert Systems with Applications |
Journal Citation | 238 (Part D) |
Article Number | 122079 |
Number of Pages | 13 |
Year | 2024 |
Publisher | Elsevier |
Place of Publication | United Kingdom |
ISSN | 0957-4174 |
1873-6793 | |
Digital Object Identifier (DOI) | https://doi.org/10.1016/j.eswa.2023.122079 |
Web Address (URL) | https://www.sciencedirect.com/science/article/pii/S0957417423025812 |
Abstract | Background: Seismic signals are useful for earthquake detection and classification. Therefore, various artificial intelligence (AI) models have been used with seismic signals to develop automated earthquake detection systems. Our primary goal is to present an accurate feature engineering model for earthquake detection and classification using seismic signals. Material and model: We have used a public dataset in this work containing three categories: (1) noise, (2) P waves, and (3) S waves. P and S waves are used to define earthquakes. We have presented two applied use cases using this dataset: (i) earthquake detection and (ii) wave classification. In this work, a new textural feature extractor has been presented by using a graph pattern similar to a butterfly. Thus, this feature extraction function is named Butterfly pattern (BFPat). We have created a new feature engineering architecture by deploying BFPat, statistics, and wavelet packet decomposition (WPD) functions. The recommended BFPat and statistics have been applied to the wavelet bands created by WPD and the raw seismic signals. Multilevel features have been extracted from both frequency and space domains. The used dataset contains signals with three channels. Using these three channels, seven signals have been created. Seven feature vectors have been created from 7 input signals used in this study. The most meaningful/informative features from the generated feature set are then selected using the iterative neighborhood component analysis feature selector method. Seven chosen feature vectors have been considered as inputs of the two shallow classifiers: k nearest neighbors (kNN) and support vector machine (SVM). A total of 14 (=7 × 2) results have been obtained in the classification phase. A majority voting process was applied in the last phase to choose the best results and improve the classification performance. Results: We have presented two use cases for our new BFPat method in this work to obtain superior results. Our model reached an accuracy of 99.58% in detecting the earthquake detection and 93.13% accuracy in 3-class classifications of waves. Conclusions: Our recommended model has achieved over 90% classification performance for both cases. Also, we have presented the most valuable channel and combinations in our work. Our developed system is ready to be tested with a bigger database. © 2023 Elsevier Ltd |
Keywords | Butterfly pattern; Seismic wave classification ; Earthquake detection ; Information fusion ; Feature engineering |
Contains Sensitive Content | Does not contain sensitive content |
ANZSRC Field of Research 2020 | 400506. Earthquake engineering |
Public Notes | Files associated with this item cannot be displayed due to copyright restrictions. |
Byline Affiliations | Ardahan University, Turkiye |
Erzurum Technical University, Turkey | |
School of Business | |
Firat University, Turkey | |
University of New England | |
University of Technology Sydney | |
School of Mathematics, Physics and Computing |
Permalink -
https://research.usq.edu.au/item/z5v81/an-automated-earthquake-classification-model-based-on-a-new-butterfly-pattern-using-seismic-signals
78
total views0
total downloads0
views this month0
downloads this month
Export as
Related outputs
Automated hip dysplasia detection using novel FlexiLBPHOG model with ultrasound images
Key, Sefa, Kurum, Huseyin, Esmez, Omer, Hafeez-Baig, Abdul, Hajiyeva, Rena, Dogan, Sengul and Tuncer, Turker. 2025. "Automated hip dysplasia detection using novel FlexiLBPHOG model with ultrasound images." Ain Shams Engineering Journal. 16 (1). https://doi.org/10.1016/j.asej.2024.103235Artificial Intelligence-Based Suicide Prevention and Prediction: A Systematic Review (2019-2023)
Atmakuru, Anirudh, Shahini, Alen, Chakraborty, Subrata, Seoni, Silvia, Salvi, Massimo, Hafeez-Baig, Abdul, Rashid, Sadaf, Tan, Ru San, Barua, Prabal Datta, Molinari, Filippo and Acharya, U Rajendra. 2025. "Artificial Intelligence-Based Suicide Prevention and Prediction: A Systematic Review (2019-2023)." Information Fusion. 114. https://doi.org/10.1016/j.inffus.2024.102673Explainable deeply-fused nets electricity demand prediction model: Factoring climate predictors for accuracy and deeper insights with probabilistic confidence interval and point-based forecasts
Ghimire, Sujan, AL-Musaylh, Mohanad S., Nguyen-Huy, Thong, Deo, Ravinesh C., Acharya, Rajendra, Casillas-Perez, David, Yaseen, Zaher Mundher and Salcedo-sanz, Sancho. 2025. "Explainable deeply-fused nets electricity demand prediction model: Factoring climate predictors for accuracy and deeper insights with probabilistic confidence interval and point-based forecasts." Applied Energy. 378 (Part A). https://doi.org/10.1016/j.apenergy.2024.124763AttentionPoolMobileNeXt: An automated construction damage detection model based on a new convolutional neural network and deep feature engineering models
Aydin, Mehmet, Barua, Prabal Datta, Chadalavada, Sreenivasulu, Dogan, Sengul, Tuncer, Turker, Chakraborty, Subrata and Acharya, Rajendra U.. 2025. "AttentionPoolMobileNeXt: An automated construction damage detection model based on a new convolutional neural network and deep feature engineering models." Multimedia Tools and Applications. 84 (4), pp. 1821-1843. https://doi.org/10.1007/s11042-024-19163-2Directed Lobish-based explainable feature engineering model with TTPat and CWINCA for EEG artifact classification
Tuncer, Turker, Dogan, Sengul, Baygin, Mehmet, Tasci, Irem, Mungen, Bulent, Tasci, Burak, Barua, Prabal Datta and Acharya, U.R.. 2024. "Directed Lobish-based explainable feature engineering model with TTPat and CWINCA for EEG artifact classification." Knowledge-Based Systems. 305. https://doi.org/10.1016/j.knosys.2024.112555Retinal Health Screening Using Artificial Intelligence with Digital Fundus Images: A Review of the Last Decade (2012-2023)
Islam, Saad, Deo, Ravinesh C., Barua, Prabal Datta, Soar, Jeffrey, Yu, Ping and Acharya, U. Rajendra. 2024. "Retinal Health Screening Using Artificial Intelligence with Digital Fundus Images: A Review of the Last Decade (2012-2023)." IEEE Access. 12, pp. 176630-176685. https://doi.org/10.1109/ACCESS.2024.3477420Automated EEG-based language detection using directed quantum pattern technique
Dogan, Sengul, Tuncer, Turker, Barua, Prabal Datta and Acharya, U.R.. 2024. "Automated EEG-based language detection using directed quantum pattern technique." Applied Soft Computing. 167 (Part A). https://doi.org/10.1016/j.asoc.2024.112301A Novel Hybrid Model for Automatic Non-Small Cell Lung Cancer Classification Using Histopathological Images
Katar, Oguzhan, Yildirim, Ozal, Tan, Ru-San and Acharya, U Rajendra. 2024. "A Novel Hybrid Model for Automatic Non-Small Cell Lung Cancer Classification Using Histopathological Images." Diagnostics. 14 (22). https://doi.org/10.3390/diagnostics14222497Synthetic Data Generation via Generative Adversarial Networks in Healthcare: A Systematic Review of Image- and Signal-Based Studies
Akpinar, Muhammed Halil, Sengur, Abdulkadir, Salvi, Massimo, Seoni, Silvia, Faust, Oliver, Mir, Hasan, Molinari,Filippo and Acharya, U. Rajendra. 2024. "Synthetic Data Generation via Generative Adversarial Networks in Healthcare: A Systematic Review of Image- and Signal-Based Studies." IEEE Open Journal of Engineering in Medicine and Biology. 6, pp. 183-192. https://doi.org/10.1109/OJEMB.2024.3508472RECOMED: A comprehensive pharmaceutical recommendation system
Zomorodi, Mariam, Ghodsollahee, Ismail, Martin, Jennifer H, Talley, Nicholas J, Salari, Vahid, Pławiak, Paweł, Rahimi, Kazem and Acharya, U.R.. 2024. "RECOMED: A comprehensive pharmaceutical recommendation system." Artificial Intelligence in Medicine. 157. https://doi.org/10.1016/j.artmed.2024.102981Artificial intelligence in assessing cardiovascular diseases and risk factors via retinal fundus images: A review of the last decade
Abdollahi, Mirsaeed, Jafarizadeh, Ali, Ghafouri-Asbagh, Amirhosein, Sobhi, Navid, Pourmoghtader, Keysan, Pedrammehr, Siamak, Asadi, Houshyar, Tan, Ru-San, Alizadehsani, Roohallah and Acharya, U. Rajendra. 2024. "Artificial intelligence in assessing cardiovascular diseases and risk factors via retinal fundus images: A review of the last decade." WIREs Data Mining and Knowledge Discovery. 14 (6). https://doi.org/10.1002/widm.1560Early prediction of sudden cardiac death using multimodal fusion of ECG Features extracted from Hilbert–Huang and wavelet transforms with explainable vision transformer and CNN models
Telangore, Hardik, Azad, Victor, Sharma, Manish, Bhurane, Ankit, Tan, Ru San and Acharya, U. Rajendra. 2024. "Early prediction of sudden cardiac death using multimodal fusion of ECG Features extracted from Hilbert–Huang and wavelet transforms with explainable vision transformer and CNN models." Computer Methods and Programs in Biomedicine. 257. https://doi.org/10.1016/j.cmpb.2024.108455A Pragmatic Approach to Fetal Monitoring via Cardiotocography Using Feature Elimination and Hyperparameter Optimization
Hardalac, Firat, Akmal, Haad, Ayturan, Kubilay, Acharya, U. Rajendra and Tan, Ru-San. 2024. "A Pragmatic Approach to Fetal Monitoring via Cardiotocography Using Feature Elimination and Hyperparameter Optimization." Interdisciplinary Sciences: Computational Life Sciences. 16 (4), pp. 882-906. https://doi.org/10.1007/s12539-024-00647-6Automated System for the Detection of Heart Anomalies Using Phonocardiograms: A Systematic Review
Gudigar, Anjan, Raghavendra, U., Maithri, M., Samanth, Jyothi, Inamdar, Mahesh Anil, Vidhya, V., Vicnesh, Jahmunah, Prabhu, Mukund A., Tan, Ru-San, Yeong, Chai Hong, Molinari, Filippo and Acharya, U. R.. 2024. "Automated System for the Detection of Heart Anomalies Using Phonocardiograms: A Systematic Review." IEEE Access. 12, pp. 138399-138428. https://doi.org/10.1109/ACCESS.2024.3465511Exploring the perspectives of Australian primary school teachers on students learning about project management
Delle-Vergini, Sante, Eacersall, Douglas, Dann, Chris, Ally, Mustafa and Chakraborty, Subrata. 2024. "Exploring the perspectives of Australian primary school teachers on students learning about project management." Issues in Educational Research. 34 (3), pp. 928-952.