Hybrid-Patch-Alex: A new patch division and deep feature extraction-based image classification model to detect COVID-19, heart failure, and other lung conditions using medical images
Article
Article Title | Hybrid-Patch-Alex: A new patch division and deep feature extraction-based image classification model to detect COVID-19, heart failure, and other lung conditions using medical images |
---|---|
ERA Journal ID | 36561 |
Article Category | Article |
Authors | Erdem, Kenan, Kobat, Mehmet Ali, Bilen, Mehmet Nail, Balik, Yunus, Alkan, Sevim, Cavlak, Feyzanur, Poyraz, Ahmet Kursad, Barua, Prabal Datta, Tuncer, Ilknur, Dogan, Sengul, Baygin, Mehmet, Erten, Mehmet, Tuncer, Turker, Tan, Ru-San and Acharya, U. Rajendra |
Journal Title | International Journal of Imaging Systems and Technology |
Journal Citation | 33 (4), pp. 1144-1159 |
Number of Pages | 16 |
Year | 2023 |
Publisher | John Wiley & Sons |
Place of Publication | United States |
ISSN | 0899-9457 |
1098-1098 | |
Digital Object Identifier (DOI) | https://doi.org/10.1002/ima.22914 |
Web Address (URL) | https://onlinelibrary.wiley.com/doi/10.1002/ima.22914 |
Abstract | COVID-19, chronic obstructive pulmonary disease (COPD), heart failure (HF), and pneumonia can lead to acute respiratory deterioration. Prompt and accurate diagnosis is crucial for effective clinical management. Chest X-ray (CXR) and chest computed tomography (CT) are commonly used for confirming the diagnosis, but they can be time-consuming and biased. To address this, we developed a computationally efficient deep feature engineering model called Hybrid-Patch-Alex for automated COVID-19, COPD, and HF diagnosis. We utilized one CXR dataset and two CT image datasets, including a newly collected dataset with four classes: COVID-19, COPD, HF, and normal. Our model employed a hybrid patch division method, transfer learning with pre-trained AlexNet, iterative neighborhood component analysis for feature selection, and three standard classifiers (k-nearest neighbor, support vector machine, and artificial neural network) for automated classification. The model achieved high accuracy rates of 99.82%, 92.90%, and 97.02% on the respective datasets, using kNN and SVM classifiers. |
Keywords | AlexNet; biomedical image classification; transfer learning; Hybrid-Patch-Alex; CT image classification |
Contains Sensitive Content | Does not contain sensitive content |
ANZSRC Field of Research 2020 | 420308. Health informatics and information systems |
Public Notes | Files associated with this item cannot be displayed due to copyright restrictions. |
Byline Affiliations | Selcuk University, Turkey |
Firat University Hospital, Turkey | |
Basaksehir Cam and Sakura City Hospital, Turkey | |
Firat University, Turkey | |
University of Southern Queensland | |
University of Technology Sydney | |
Government office in Elazig, Turkiye | |
Erzurum Technical University, Turkey | |
Elazig Fethi Sekin City Hospital, Turkey | |
Duke-NUS Medical School, Singapore | |
School of Mathematics, Physics and Computing |
https://research.usq.edu.au/item/z1v85/hybrid-patch-alex-a-new-patch-division-and-deep-feature-extraction-based-image-classification-model-to-detect-covid-19-heart-failure-and-other-lung-conditions-using-medical-images
56
total views0
total downloads1
views this month0
downloads this month
Export as
Related outputs
Automated hip dysplasia detection using novel FlexiLBPHOG model with ultrasound images
Key, Sefa, Kurum, Huseyin, Esmez, Omer, Hafeez-Baig, Abdul, Hajiyeva, Rena, Dogan, Sengul and Tuncer, Turker. 2025. "Automated hip dysplasia detection using novel FlexiLBPHOG model with ultrasound images." Ain Shams Engineering Journal. 16 (1). https://doi.org/10.1016/j.asej.2024.103235Artificial Intelligence-Based Suicide Prevention and Prediction: A Systematic Review (2019-2023)
Atmakuru, Anirudh, Shahini, Alen, Chakraborty, Subrata, Seoni, Silvia, Salvi, Massimo, Hafeez-Baig, Abdul, Rashid, Sadaf, Tan, Ru San, Barua, Prabal Datta, Molinari, Filippo and Acharya, U Rajendra. 2025. "Artificial Intelligence-Based Suicide Prevention and Prediction: A Systematic Review (2019-2023)." Information Fusion. 114. https://doi.org/10.1016/j.inffus.2024.102673Explainable deeply-fused nets electricity demand prediction model: Factoring climate predictors for accuracy and deeper insights with probabilistic confidence interval and point-based forecasts
Ghimire, Sujan, AL-Musaylh, Mohanad S., Nguyen-Huy, Thong, Deo, Ravinesh C., Acharya, Rajendra, Casillas-Perez, David, Yaseen, Zaher Mundher and Salcedo-sanz, Sancho. 2025. "Explainable deeply-fused nets electricity demand prediction model: Factoring climate predictors for accuracy and deeper insights with probabilistic confidence interval and point-based forecasts." Applied Energy. 378 (Part A). https://doi.org/10.1016/j.apenergy.2024.124763Retinal Health Screening Using Artificial Intelligence with Digital Fundus Images: A Review of the Last Decade (2012-2023)
Deo, Ravinesh C., Islam, Saad, Barua, Prabal Datta, Soar, Jeffrey, Yu, Ping and Acharya, U. Rajendra. 2024. "Retinal Health Screening Using Artificial Intelligence with Digital Fundus Images: A Review of the Last Decade (2012-2023)." IEEE Access. 12, pp. 176630-176685. https://doi.org/10.1109/ACCESS.2024.3477420Automated EEG-based language detection using directed quantum pattern technique
Dogan, Sengul, Tuncer, Turker, Barua, Prabal Datta and Acharya, U.R.. 2024. "Automated EEG-based language detection using directed quantum pattern technique." Applied Soft Computing. 167 (Part A). https://doi.org/10.1016/j.asoc.2024.112301A Novel Hybrid Model for Automatic Non-Small Cell Lung Cancer Classification Using Histopathological Images
Katar, Oguzhan, Yildirim, Ozal, Tan, Ru-San and Acharya, U Rajendra. 2024. "A Novel Hybrid Model for Automatic Non-Small Cell Lung Cancer Classification Using Histopathological Images." Diagnostics. 14 (22). https://doi.org/10.3390/diagnostics14222497Synthetic Data Generation via Generative Adversarial Networks in Healthcare: A Systematic Review of Image- and Signal-Based Studies
Akpinar, Muhammed Halil, Sengur, Abdulkadir, Salvi, Massimo, Seoni, Silvia, Faust, Oliver, Mir, Hasan, Molinari,Filippo and Acharya, U. Rajendra. 2024. "Synthetic Data Generation via Generative Adversarial Networks in Healthcare: A Systematic Review of Image- and Signal-Based Studies." IEEE Open Journal of Engineering in Medicine and Biology. 6, pp. 183-192. https://doi.org/10.1109/OJEMB.2024.3508472RECOMED: A comprehensive pharmaceutical recommendation system
Zomorodi, Mariam, Ghodsollahee, Ismail, Martin, Jennifer H, Talley, Nicholas J, Salari, Vahid, Pławiak, Paweł, Rahimi, Kazem and Acharya, U.R.. 2024. "RECOMED: A comprehensive pharmaceutical recommendation system." Artificial Intelligence in Medicine. 157. https://doi.org/10.1016/j.artmed.2024.102981Early prediction of sudden cardiac death using multimodal fusion of ECG Features extracted from Hilbert–Huang and wavelet transforms with explainable vision transformer and CNN models
Telangore, Hardik, Azad, Victor, Sharma, Manish, Bhurane, Ankit, Tan, Ru San and Acharya, U. Rajendra. 2024. "Early prediction of sudden cardiac death using multimodal fusion of ECG Features extracted from Hilbert–Huang and wavelet transforms with explainable vision transformer and CNN models." Computer Methods and Programs in Biomedicine. 257. https://doi.org/10.1016/j.cmpb.2024.108455Automated System for the Detection of Heart Anomalies Using Phonocardiograms: A Systematic Review
Gudigar, Anjan, Raghavendra, U., Maithri, M., Samanth, Jyothi, Inamdar, Mahesh Anil, Vidhya, V., Vicnesh, Jahmunah, Prabhu, Mukund A., Tan, Ru-San, Yeong, Chai Hong, Molinari, Filippo and Acharya, U. R.. 2024. "Automated System for the Detection of Heart Anomalies Using Phonocardiograms: A Systematic Review." IEEE Access. 12, pp. 138399-138428. https://doi.org/10.1109/ACCESS.2024.3465511