Application of explainable artificial intelligence for healthcare: A systematic review of the last decade (2011–2022)
Article
Article Title | Application of explainable artificial intelligence for healthcare: A systematic review of the last decade (2011–2022) |
---|---|
ERA Journal ID | 5039 |
Article Category | Article |
Authors | Loh, Hui Wen, Ooi, Chui Ping, Seoni, Silvia, Barua, Prabal Datta, Molinari, Filippo and Acharya, U. Rajendra |
Journal Title | Computer Methods and Programs in Biomedicine |
Journal Citation | 226 |
Article Number | 107161 |
Number of Pages | 21 |
Year | 2022 |
Publisher | Elsevier |
Place of Publication | Ireland |
ISSN | 0169-2607 |
1872-7565 | |
Digital Object Identifier (DOI) | https://doi.org/10.1016/j.cmpb.2022.107161 |
Web Address (URL) | https://www.sciencedirect.com/science/article/pii/S0169260722005429 |
Abstract | Background and objectives: Artificial intelligence (AI) has branched out to various applications in healthcare, such as health services management, predictive medicine, clinical decision-making, and patient data and diagnostics. Although AI models have achieved human-like performance, their use is still limited because they are seen as a black box. This lack of trust remains the main reason for their low use in practice, especially in healthcare. Hence, explainable artificial intelligence (XAI) has been introduced as a technique that can provide confidence in the model's prediction by explaining how the prediction is derived, thereby encouraging the use of AI systems in healthcare. The primary goal of this review is to provide areas of healthcare that require more attention from the XAI research community. Methods: Multiple journal databases were thoroughly searched using PRISMA guidelines 2020. Studies that do not appear in Q1 journals, which are highly credible, were excluded. Results: In this review, we surveyed 99 Q1 articles covering the following XAI techniques: SHAP, LIME, GradCAM, LRP, Fuzzy classifier, EBM, CBR, rule-based systems, and others. Conclusion: We discovered that detecting abnormalities in 1D biosignals and identifying key text in clinical notes are areas that require more attention from the XAI research community. We hope this is review will encourage the development of a holistic cloud system for a smart city. |
Keywords | Attention mechanism; CBR; Deep learning; EBM; Expert system; Explainable artificial intelligence (XAI); GradCAM; Healthcare; LIME; LRP; Machine learning; PRISMA; Rule-based; Saliency map; SHAP |
Contains Sensitive Content | Does not contain sensitive content |
ANZSRC Field of Research 2020 | 400306. Computational physiology |
Public Notes | Files associated with this item cannot be displayed due to copyright restrictions. |
Byline Affiliations | Singapore University of Social Sciences (SUSS), Singapore |
School of Business | |
Ngee Ann Polytechnic, Singapore | |
Kumamoto University, Japan | |
Polytechnic University of Turin, Italy | |
University of Technology Sydney |
https://research.usq.edu.au/item/yyq1y/application-of-explainable-artificial-intelligence-for-healthcare-a-systematic-review-of-the-last-decade-2011-2022
93
total views2
total downloads2
views this month0
downloads this month