Gaborpdnet: Gabor transformation and deep neural network for parkinson’s disease detection using eeg signals
Article
Loh, Hui Wen, Ooi, Chui Ping, Palmer, Elizabeth, Barua, Prabal Datta, Dogan, Sengul, Tuncer, Turker, Baygin, Mehmet and Acharya, U. Rajendra. 2021. "Gaborpdnet: Gabor transformation and deep neural network for parkinson’s disease detection using eeg signals." Electronics. 10 (14). https://doi.org/10.3390/electronics10141740
Article Title | Gaborpdnet: Gabor transformation and deep neural network for parkinson’s disease detection using eeg signals |
---|---|
ERA Journal ID | 210405 |
Article Category | Article |
Authors | Loh, Hui Wen, Ooi, Chui Ping, Palmer, Elizabeth, Barua, Prabal Datta, Dogan, Sengul, Tuncer, Turker, Baygin, Mehmet and Acharya, U. Rajendra |
Journal Title | Electronics |
Journal Citation | 10 (14) |
Article Number | 1740 |
Number of Pages | 15 |
Year | 2021 |
Publisher | MDPI AG |
Place of Publication | Switzerland |
ISSN | 2079-9292 |
Digital Object Identifier (DOI) | https://doi.org/10.3390/electronics10141740 |
Web Address (URL) | https://www.mdpi.com/2079-9292/10/14/1740 |
Abstract | Parkinson’s disease (PD) is globally the most common neurodegenerative movement disorder. It is characterized by a loss of dopaminergic neurons in the substantia nigra of the brain. However, current methods to diagnose PD on the basis of clinical features of Parkinsonism may lead to misdiagnoses. Hence, noninvasive methods such as electroencephalographic (EEG) recordings of PD patients can be an alternative biomarker. In this study, a deep-learning model is proposed for automated PD diagnosis. EEG recordings of 16 healthy controls and 15 PD patients were used for analysis. Using Gabor transform, EEG recordings were converted into spectrograms, which were used to train the proposed two-dimensional convolutional neural network (2D-CNN) model. As a result, the proposed model achieved high classification accuracy of 99.46% (±0.73) for 3-class classification (healthy controls, and PD patients with and without medication) using tenfold cross-validation. This indicates the potential of proposed model to simultaneously automatically detect PD patients and their medication status. The proposed model is ready to be validated with a larger database before implementation as a computer-aided diagnostic (CAD) tool for clinical-decision support. |
Keywords | Classification; Parkinson’s disease (PD); electroencephalogram (EEG); deep learning; CNN; Gabor transform; spectrograms |
ANZSRC Field of Research 2020 | 400306. Computational physiology |
Byline Affiliations | Singapore University of Social Sciences (SUSS), Singapore |
Sydney Children's Hospital, Australia | |
University of New South Wales | |
University of Technology Sydney | |
School of Management and Enterprise | |
Firat University, Turkey | |
Ardahan University, Turkiye | |
Ngee Ann Polytechnic, Singapore | |
Asia University, Taiwan | |
Kumamoto University, Japan |
Permalink -
https://research.usq.edu.au/item/z1vx7/gaborpdnet-gabor-transformation-and-deep-neural-network-for-parkinson-s-disease-detection-using-eeg-signals
Download files
82
total views20
total downloads13
views this month0
downloads this month
Export as
Related outputs
Automated hip dysplasia detection using novel FlexiLBPHOG model with ultrasound images
Key, Sefa, Kurum, Huseyin, Esmez, Omer, Hafeez-Baig, Abdul, Hajiyeva, Rena, Dogan, Sengul and Tuncer, Turker. 2025. "Automated hip dysplasia detection using novel FlexiLBPHOG model with ultrasound images." Ain Shams Engineering Journal. 16 (1). https://doi.org/10.1016/j.asej.2024.103235Artificial Intelligence-Based Suicide Prevention and Prediction: A Systematic Review (2019-2023)
Atmakuru, Anirudh, Shahini, Alen, Chakraborty, Subrata, Seoni, Silvia, Salvi, Massimo, Hafeez-Baig, Abdul, Rashid, Sadaf, Tan, Ru San, Barua, Prabal Datta, Molinari, Filippo and Acharya, U Rajendra. 2025. "Artificial Intelligence-Based Suicide Prevention and Prediction: A Systematic Review (2019-2023)." Information Fusion. 114. https://doi.org/10.1016/j.inffus.2024.102673Explainable deeply-fused nets electricity demand prediction model: Factoring climate predictors for accuracy and deeper insights with probabilistic confidence interval and point-based forecasts
Ghimire, Sujan, AL-Musaylh, Mohanad S., Nguyen-Huy, Thong, Deo, Ravinesh C., Acharya, Rajendra, Casillas-Perez, David, Yaseen, Zaher Mundher and Salcedo-sanz, Sancho. 2025. "Explainable deeply-fused nets electricity demand prediction model: Factoring climate predictors for accuracy and deeper insights with probabilistic confidence interval and point-based forecasts." Applied Energy. 378 (Part A). https://doi.org/10.1016/j.apenergy.2024.124763Directed Lobish-based explainable feature engineering model with TTPat and CWINCA for EEG artifact classification
Tuncer, Turker, Dogan, Sengul, Baygin, Mehmet, Tasci, Irem, Mungen, Bulent, Tasci, Burak, Barua, Prabal Datta and Acharya, U.R.. 2024. "Directed Lobish-based explainable feature engineering model with TTPat and CWINCA for EEG artifact classification." Knowledge-Based Systems. 305. https://doi.org/10.1016/j.knosys.2024.112555Retinal Health Screening Using Artificial Intelligence with Digital Fundus Images: A Review of the Last Decade (2012-2023)
Islam, Saad, Deo, Ravinesh C., Barua, Prabal Datta, Soar, Jeffrey, Yu, Ping and Acharya, U. Rajendra. 2024. "Retinal Health Screening Using Artificial Intelligence with Digital Fundus Images: A Review of the Last Decade (2012-2023)." IEEE Access. 12, pp. 176630-176685. https://doi.org/10.1109/ACCESS.2024.3477420Automated EEG-based language detection using directed quantum pattern technique
Dogan, Sengul, Tuncer, Turker, Barua, Prabal Datta and Acharya, U.R.. 2024. "Automated EEG-based language detection using directed quantum pattern technique." Applied Soft Computing. 167 (Part A). https://doi.org/10.1016/j.asoc.2024.112301A Novel Hybrid Model for Automatic Non-Small Cell Lung Cancer Classification Using Histopathological Images
Katar, Oguzhan, Yildirim, Ozal, Tan, Ru-San and Acharya, U Rajendra. 2024. "A Novel Hybrid Model for Automatic Non-Small Cell Lung Cancer Classification Using Histopathological Images." Diagnostics. 14 (22). https://doi.org/10.3390/diagnostics14222497Synthetic Data Generation via Generative Adversarial Networks in Healthcare: A Systematic Review of Image- and Signal-Based Studies
Akpinar, Muhammed Halil, Sengur, Abdulkadir, Salvi, Massimo, Seoni, Silvia, Faust, Oliver, Mir, Hasan, Molinari,Filippo and Acharya, U. Rajendra. 2024. "Synthetic Data Generation via Generative Adversarial Networks in Healthcare: A Systematic Review of Image- and Signal-Based Studies." IEEE Open Journal of Engineering in Medicine and Biology. 6, pp. 183-192. https://doi.org/10.1109/OJEMB.2024.3508472RECOMED: A comprehensive pharmaceutical recommendation system
Zomorodi, Mariam, Ghodsollahee, Ismail, Martin, Jennifer H, Talley, Nicholas J, Salari, Vahid, Pławiak, Paweł, Rahimi, Kazem and Acharya, U.R.. 2024. "RECOMED: A comprehensive pharmaceutical recommendation system." Artificial Intelligence in Medicine. 157. https://doi.org/10.1016/j.artmed.2024.102981Artificial intelligence in assessing cardiovascular diseases and risk factors via retinal fundus images: A review of the last decade
Abdollahi, Mirsaeed, Jafarizadeh, Ali, Ghafouri-Asbagh, Amirhosein, Sobhi, Navid, Pourmoghtader, Keysan, Pedrammehr, Siamak, Asadi, Houshyar, Tan, Ru-San, Alizadehsani, Roohallah and Acharya, U. Rajendra. 2024. "Artificial intelligence in assessing cardiovascular diseases and risk factors via retinal fundus images: A review of the last decade." WIREs Data Mining and Knowledge Discovery. 14 (6). https://doi.org/10.1002/widm.1560Early prediction of sudden cardiac death using multimodal fusion of ECG Features extracted from Hilbert–Huang and wavelet transforms with explainable vision transformer and CNN models
Telangore, Hardik, Azad, Victor, Sharma, Manish, Bhurane, Ankit, Tan, Ru San and Acharya, U. Rajendra. 2024. "Early prediction of sudden cardiac death using multimodal fusion of ECG Features extracted from Hilbert–Huang and wavelet transforms with explainable vision transformer and CNN models." Computer Methods and Programs in Biomedicine. 257. https://doi.org/10.1016/j.cmpb.2024.108455A Pragmatic Approach to Fetal Monitoring via Cardiotocography Using Feature Elimination and Hyperparameter Optimization
Hardalac, Firat, Akmal, Haad, Ayturan, Kubilay, Acharya, U. Rajendra and Tan, Ru-San. 2024. "A Pragmatic Approach to Fetal Monitoring via Cardiotocography Using Feature Elimination and Hyperparameter Optimization." Interdisciplinary Sciences: Computational Life Sciences. 16 (4), pp. 882-906. https://doi.org/10.1007/s12539-024-00647-6Automated System for the Detection of Heart Anomalies Using Phonocardiograms: A Systematic Review
Gudigar, Anjan, Raghavendra, U., Maithri, M., Samanth, Jyothi, Inamdar, Mahesh Anil, Vidhya, V., Vicnesh, Jahmunah, Prabhu, Mukund A., Tan, Ru-San, Yeong, Chai Hong, Molinari, Filippo and Acharya, U. R.. 2024. "Automated System for the Detection of Heart Anomalies Using Phonocardiograms: A Systematic Review." IEEE Access. 12, pp. 138399-138428. https://doi.org/10.1109/ACCESS.2024.3465511