Automated Detection of Gastrointestinal Diseases Using Resnet50*-Based Explainable Deep Feature Engineering Model with Endoscopy Images
Article
Article Title | Automated Detection of Gastrointestinal Diseases Using Resnet50*-Based Explainable Deep Feature Engineering Model with Endoscopy Images |
---|---|
ERA Journal ID | 34304 |
Article Category | Article |
Authors | Cambay, Veysel Yusu, Barua, Prabal Dat, Hafeez Baig, Abdul, Dogan, Sengul, Baygin, Mehmet, Tuncer, Turker and Acharya, U. R. |
Journal Title | Sensors |
Journal Citation | 24 (23) |
Number of Pages | 23 |
Year | 2024 |
Publisher | MDPI AG |
Place of Publication | Switzerland |
ISSN | 1424-8220 |
1424-8239 | |
Digital Object Identifier (DOI) | https://doi.org/10.3390/s24237710 |
Web Address (URL) | https://www.mdpi.com/1424-8220/24/23/7710 |
Abstract | This work aims to develop a novel convolutional neural network (CNN) named ResNet50* to detect various gastrointestinal diseases using a new ResNet50*-based deep feature engineering model with endoscopy images. The novelty of this work is the development of ResNet50*, a new variant of the ResNet model, featuring convolution-based residual blocks and a pooling-based attention mechanism similar to PoolFormer. Using ResNet50*, a gastrointestinal image dataset was trained, and an explainable deep feature engineering (DFE) model was developed. This DFE model comprises four primary stages: (i) feature extraction, (ii) iterative feature selection, (iii) classification using shallow classifiers, and (iv) information fusion. The DFE model is self-organizing, producing 14 different outcomes (8 classifier-specific and 6 voted) and selecting the most effective result as the final decision. During feature extraction, heatmaps are identified using gradient-weighted class activation mapping (Grad-CAM) with features derived from these regions via the final global average pooling layer of the pretrained ResNet50*. Four iterative feature selectors are employed in the feature selection stage to obtain distinct feature vectors. The classifiers k-nearest neighbors (kNN) and support vector machine (SVM) are used to produce specific outcomes. Iterative majority voting is employed in the final stage to obtain voted outcomes using the top result determined by the greedy algorithm based on classification accuracy. The presented ResNet50* was trained on an augmented version of the Kvasir dataset, and its performance was tested using Kvasir, Kvasir version 2, and wireless capsule endoscopy (WCE) curated colon disease image datasets. Our proposed ResNet50* model demonstrated a classification accuracy of more than 92% for all three datasets and a remarkable 99.13% accuracy for the WCE dataset. These findings affirm the superior classification ability of the ResNet50* model and confirm the generalizability of the developed architecture, showing consistent performance across all three distinct datasets. |
Keywords | ResNet50*; colon disease classification; deep feature engineering; multiple iterative feature selection |
Contains Sensitive Content | Does not contain sensitive content |
ANZSRC Field of Research 2020 | 420302. Digital health |
Byline Affiliations | Firat University, Turkey |
Mus Alparslan University, Turkey | |
School of Business | |
School of Management and Enterprise | |
Erzurum Technical University, Turkey | |
School of Mathematics, Physics and Computing |
https://research.usq.edu.au/item/zqqv7/automated-detection-of-gastrointestinal-diseases-using-resnet50-based-explainable-deep-feature-engineering-model-with-endoscopy-images
Download files
34
total views7
total downloads6
views this month1
downloads this month
Export as
Related outputs
Dr Abdul Hafeez-Baig
Hafeez-Baig, A.. Dr Abdul Hafeez-Baig.Automated hip dysplasia detection using novel FlexiLBPHOG model with ultrasound images
Key, Sefa, Kurum, Huseyin, Esmez, Omer, Hafeez-Baig, Abdul, Hajiyeva, Rena, Dogan, Sengul and Tuncer, Turker. 2025. "Automated hip dysplasia detection using novel FlexiLBPHOG model with ultrasound images." Ain Shams Engineering Journal. 16 (1). https://doi.org/10.1016/j.asej.2024.103235Artificial Intelligence-Based Suicide Prevention and Prediction: A Systematic Review (2019-2023)
Atmakuru, Anirudh, Shahini, Alen, Chakraborty, Subrata, Seoni, Silvia, Salvi, Massimo, Hafeez-Baig, Abdul, Rashid, Sadaf, Tan, Ru San, Barua, Prabal Datta, Molinari, Filippo and Acharya, U Rajendra. 2025. "Artificial Intelligence-Based Suicide Prevention and Prediction: A Systematic Review (2019-2023)." Information Fusion. 114. https://doi.org/10.1016/j.inffus.2024.102673Explainable deeply-fused nets electricity demand prediction model: Factoring climate predictors for accuracy and deeper insights with probabilistic confidence interval and point-based forecasts
Ghimire, Sujan, AL-Musaylh, Mohanad S., Nguyen-Huy, Thong, Deo, Ravinesh C., Acharya, Rajendra, Casillas-Perez, David, Yaseen, Zaher Mundher and Salcedo-sanz, Sancho. 2025. "Explainable deeply-fused nets electricity demand prediction model: Factoring climate predictors for accuracy and deeper insights with probabilistic confidence interval and point-based forecasts." Applied Energy. 378 (Part A). https://doi.org/10.1016/j.apenergy.2024.124763Directed Lobish-based explainable feature engineering model with TTPat and CWINCA for EEG artifact classification
Tuncer, Turker, Dogan, Sengul, Baygin, Mehmet, Tasci, Irem, Mungen, Bulent, Tasci, Burak, Barua, Prabal Datta and Acharya, U.R.. 2024. "Directed Lobish-based explainable feature engineering model with TTPat and CWINCA for EEG artifact classification." Knowledge-Based Systems. 305. https://doi.org/10.1016/j.knosys.2024.112555Retinal Health Screening Using Artificial Intelligence with Digital Fundus Images: A Review of the Last Decade (2012-2023)
Deo, Ravinesh C., Islam, Saad, Barua, Prabal Datta, Soar, Jeffrey, Yu, Ping and Acharya, U. Rajendra. 2024. "Retinal Health Screening Using Artificial Intelligence with Digital Fundus Images: A Review of the Last Decade (2012-2023)." IEEE Access. 12, pp. 176630-176685. https://doi.org/10.1109/ACCESS.2024.3477420Automated EEG-based language detection using directed quantum pattern technique
Dogan, Sengul, Tuncer, Turker, Barua, Prabal Datta and Acharya, U.R.. 2024. "Automated EEG-based language detection using directed quantum pattern technique." Applied Soft Computing. 167 (Part A). https://doi.org/10.1016/j.asoc.2024.112301A Novel Hybrid Model for Automatic Non-Small Cell Lung Cancer Classification Using Histopathological Images
Katar, Oguzhan, Yildirim, Ozal, Tan, Ru-San and Acharya, U Rajendra. 2024. "A Novel Hybrid Model for Automatic Non-Small Cell Lung Cancer Classification Using Histopathological Images." Diagnostics. 14 (22). https://doi.org/10.3390/diagnostics14222497Synthetic Data Generation via Generative Adversarial Networks in Healthcare: A Systematic Review of Image- and Signal-Based Studies
Akpinar, Muhammed Halil, Sengur, Abdulkadir, Salvi, Massimo, Seoni, Silvia, Faust, Oliver, Mir, Hasan, Molinari,Filippo and Acharya, U. Rajendra. 2024. "Synthetic Data Generation via Generative Adversarial Networks in Healthcare: A Systematic Review of Image- and Signal-Based Studies." IEEE Open Journal of Engineering in Medicine and Biology. 6, pp. 183-192. https://doi.org/10.1109/OJEMB.2024.3508472RECOMED: A comprehensive pharmaceutical recommendation system
Zomorodi, Mariam, Ghodsollahee, Ismail, Martin, Jennifer H, Talley, Nicholas J, Salari, Vahid, Pławiak, Paweł, Rahimi, Kazem and Acharya, U.R.. 2024. "RECOMED: A comprehensive pharmaceutical recommendation system." Artificial Intelligence in Medicine. 157. https://doi.org/10.1016/j.artmed.2024.102981Artificial intelligence in assessing cardiovascular diseases and risk factors via retinal fundus images: A review of the last decade
Abdollahi, Mirsaeed, Jafarizadeh, Ali, Ghafouri-Asbagh, Amirhosein, Sobhi, Navid, Pourmoghtader, Keysan, Pedrammehr, Siamak, Asadi, Houshyar, Tan, Ru-San, Alizadehsani, Roohallah and Acharya, U. Rajendra. 2024. "Artificial intelligence in assessing cardiovascular diseases and risk factors via retinal fundus images: A review of the last decade." WIREs Data Mining and Knowledge Discovery. 14 (6). https://doi.org/10.1002/widm.1560Early prediction of sudden cardiac death using multimodal fusion of ECG Features extracted from Hilbert–Huang and wavelet transforms with explainable vision transformer and CNN models
Telangore, Hardik, Azad, Victor, Sharma, Manish, Bhurane, Ankit, Tan, Ru San and Acharya, U. Rajendra. 2024. "Early prediction of sudden cardiac death using multimodal fusion of ECG Features extracted from Hilbert–Huang and wavelet transforms with explainable vision transformer and CNN models." Computer Methods and Programs in Biomedicine. 257. https://doi.org/10.1016/j.cmpb.2024.108455A Pragmatic Approach to Fetal Monitoring via Cardiotocography Using Feature Elimination and Hyperparameter Optimization
Hardalac, Firat, Akmal, Haad, Ayturan, Kubilay, Acharya, U. Rajendra and Tan, Ru-San. 2024. "A Pragmatic Approach to Fetal Monitoring via Cardiotocography Using Feature Elimination and Hyperparameter Optimization." Interdisciplinary Sciences: Computational Life Sciences. 16 (4), pp. 882-906. https://doi.org/10.1007/s12539-024-00647-6Automated System for the Detection of Heart Anomalies Using Phonocardiograms: A Systematic Review
Gudigar, Anjan, Raghavendra, U., Maithri, M., Samanth, Jyothi, Inamdar, Mahesh Anil, Vidhya, V., Vicnesh, Jahmunah, Prabhu, Mukund A., Tan, Ru-San, Yeong, Chai Hong, Molinari, Filippo and Acharya, U. R.. 2024. "Automated System for the Detection of Heart Anomalies Using Phonocardiograms: A Systematic Review." IEEE Access. 12, pp. 138399-138428. https://doi.org/10.1109/ACCESS.2024.3465511