Automated reading level classification model based on improved orbital pattern
Article
Abed, Rusul Qasim, Dikmen, Melih, Aydemir, Emrah, Barua, Prabal Datta, Dogan, Sengul, Tuncer, Turker, Palmer, Elizabeth Emma, Ciaccio, Edward J. and Acharya, U. Rajendra. 2024. "Automated reading level classification model based on improved orbital pattern." Multimedia Tools and Applications. 83 (17), pp. 52819-52840. https://doi.org/10.1007/s11042-023-17535-8
Article Title | Automated reading level classification model based on improved orbital pattern |
---|---|
ERA Journal ID | 18083 |
Article Category | Article |
Authors | Abed, Rusul Qasim, Dikmen, Melih, Aydemir, Emrah, Barua, Prabal Datta, Dogan, Sengul, Tuncer, Turker, Palmer, Elizabeth Emma, Ciaccio, Edward J. and Acharya, U. Rajendra |
Journal Title | Multimedia Tools and Applications |
Journal Citation | 83 (17), pp. 52819-52840 |
Number of Pages | 22 |
Year | 2024 |
Publisher | Springer |
Place of Publication | United States |
ISSN | 1380-7501 |
1573-7721 | |
Digital Object Identifier (DOI) | https://doi.org/10.1007/s11042-023-17535-8 |
Web Address (URL) | https://link.springer.com/article/10.1007/s11042-023-17535-8 |
Abstract | Automatic reading level for detection and classification is a challenging problem in machine learning. A multilevel feature extraction-based self-organized model may be useful to overcome this hurdle without using deep learning, which requires an ultra-large sample size. In this work, a novel speech dataset was collected from 57 primary school students by reading a fixed paragraph, and experts labeled these speeches as good, moderate, or bad. We then developed a handcrafted, self-organized learning model. We constructed a novel method using a multilevel feature extraction method, termed improved orbital pattern (IOP) and wavelet packet decomposition (WPD). The proposed IOP generates textural features from the speeches and the used wavelet bands. These extracted features are input to neighborhood components analysis (NCA) to reduce feature dimension. Then the feature set is input to the support vector machine (SVM) classifier to obtain loss values. The output of ten feature vectors of the NCA and SVM classifiers are merged to provide the final feature vector. The most significant 512 features were selected using the NCA feature selection function. These 512 features are classified via the SVM classifier with tenfold cross-validation (CV) and leave-one-subject-out (LOSO) validation strategies. The proposed IOP and WPD-based model yielded an accuracy of 92.75% with a tenfold CV and a 76.18% accuracy using LOSO validation strategies in classifying bad, intermediate, and good reading levels. Our developed model is ready to be validated with more data before its actual usage in schools to aid the teachers. |
Keywords | 21st-century abilities; Human–computer interface; Teaching/learning strategies; Data science applications in education |
Contains Sensitive Content | Does not contain sensitive content |
ANZSRC Field of Research 2020 | 460912. Knowledge and information management |
Public Notes | Files associated with this item cannot be displayed due to copyright restrictions. |
Byline Affiliations | Kirsehir Ahievran University, Turkey |
Firat University, Turkey | |
Sakarya University, Turkey | |
School of Business | |
Sydney Children's Hospital, Australia | |
University of New South Wales | |
Columbia University Irving Medical Center, United States | |
School of Mathematics, Physics and Computing |
Permalink -
https://research.usq.edu.au/item/z8441/automated-reading-level-classification-model-based-on-improved-orbital-pattern
42
total views0
total downloads0
views this month0
downloads this month
Export as
Related outputs
Automated hip dysplasia detection using novel FlexiLBPHOG model with ultrasound images
Key, Sefa, Kurum, Huseyin, Esmez, Omer, Hafeez-Baig, Abdul, Hajiyeva, Rena, Dogan, Sengul and Tuncer, Turker. 2025. "Automated hip dysplasia detection using novel FlexiLBPHOG model with ultrasound images." Ain Shams Engineering Journal. 16 (1). https://doi.org/10.1016/j.asej.2024.103235Artificial Intelligence-Based Suicide Prevention and Prediction: A Systematic Review (2019-2023)
Atmakuru, Anirudh, Shahini, Alen, Chakraborty, Subrata, Seoni, Silvia, Salvi, Massimo, Hafeez-Baig, Abdul, Rashid, Sadaf, Tan, Ru San, Barua, Prabal Datta, Molinari, Filippo and Acharya, U Rajendra. 2025. "Artificial Intelligence-Based Suicide Prevention and Prediction: A Systematic Review (2019-2023)." Information Fusion. 114. https://doi.org/10.1016/j.inffus.2024.102673Explainable deeply-fused nets electricity demand prediction model: Factoring climate predictors for accuracy and deeper insights with probabilistic confidence interval and point-based forecasts
Ghimire, Sujan, AL-Musaylh, Mohanad S., Nguyen-Huy, Thong, Deo, Ravinesh C., Acharya, Rajendra, Casillas-Perez, David, Yaseen, Zaher Mundher and Salcedo-sanz, Sancho. 2025. "Explainable deeply-fused nets electricity demand prediction model: Factoring climate predictors for accuracy and deeper insights with probabilistic confidence interval and point-based forecasts." Applied Energy. 378 (Part A). https://doi.org/10.1016/j.apenergy.2024.124763AttentionPoolMobileNeXt: An automated construction damage detection model based on a new convolutional neural network and deep feature engineering models
Aydin, Mehmet, Barua, Prabal Datta, Chadalavada, Sreenivasulu, Dogan, Sengul, Tuncer, Turker, Chakraborty, Subrata and Acharya, Rajendra U.. 2025. "AttentionPoolMobileNeXt: An automated construction damage detection model based on a new convolutional neural network and deep feature engineering models." Multimedia Tools and Applications. 84 (4), pp. 1821-1843. https://doi.org/10.1007/s11042-024-19163-2Directed Lobish-based explainable feature engineering model with TTPat and CWINCA for EEG artifact classification
Tuncer, Turker, Dogan, Sengul, Baygin, Mehmet, Tasci, Irem, Mungen, Bulent, Tasci, Burak, Barua, Prabal Datta and Acharya, U.R.. 2024. "Directed Lobish-based explainable feature engineering model with TTPat and CWINCA for EEG artifact classification." Knowledge-Based Systems. 305. https://doi.org/10.1016/j.knosys.2024.112555Retinal Health Screening Using Artificial Intelligence with Digital Fundus Images: A Review of the Last Decade (2012-2023)
Islam, Saad, Deo, Ravinesh C., Barua, Prabal Datta, Soar, Jeffrey, Yu, Ping and Acharya, U. Rajendra. 2024. "Retinal Health Screening Using Artificial Intelligence with Digital Fundus Images: A Review of the Last Decade (2012-2023)." IEEE Access. 12, pp. 176630-176685. https://doi.org/10.1109/ACCESS.2024.3477420Automated EEG-based language detection using directed quantum pattern technique
Dogan, Sengul, Tuncer, Turker, Barua, Prabal Datta and Acharya, U.R.. 2024. "Automated EEG-based language detection using directed quantum pattern technique." Applied Soft Computing. 167 (Part A). https://doi.org/10.1016/j.asoc.2024.112301A Novel Hybrid Model for Automatic Non-Small Cell Lung Cancer Classification Using Histopathological Images
Katar, Oguzhan, Yildirim, Ozal, Tan, Ru-San and Acharya, U Rajendra. 2024. "A Novel Hybrid Model for Automatic Non-Small Cell Lung Cancer Classification Using Histopathological Images." Diagnostics. 14 (22). https://doi.org/10.3390/diagnostics14222497Synthetic Data Generation via Generative Adversarial Networks in Healthcare: A Systematic Review of Image- and Signal-Based Studies
Akpinar, Muhammed Halil, Sengur, Abdulkadir, Salvi, Massimo, Seoni, Silvia, Faust, Oliver, Mir, Hasan, Molinari,Filippo and Acharya, U. Rajendra. 2024. "Synthetic Data Generation via Generative Adversarial Networks in Healthcare: A Systematic Review of Image- and Signal-Based Studies." IEEE Open Journal of Engineering in Medicine and Biology. 6, pp. 183-192. https://doi.org/10.1109/OJEMB.2024.3508472RECOMED: A comprehensive pharmaceutical recommendation system
Zomorodi, Mariam, Ghodsollahee, Ismail, Martin, Jennifer H, Talley, Nicholas J, Salari, Vahid, Pławiak, Paweł, Rahimi, Kazem and Acharya, U.R.. 2024. "RECOMED: A comprehensive pharmaceutical recommendation system." Artificial Intelligence in Medicine. 157. https://doi.org/10.1016/j.artmed.2024.102981Artificial intelligence in assessing cardiovascular diseases and risk factors via retinal fundus images: A review of the last decade
Abdollahi, Mirsaeed, Jafarizadeh, Ali, Ghafouri-Asbagh, Amirhosein, Sobhi, Navid, Pourmoghtader, Keysan, Pedrammehr, Siamak, Asadi, Houshyar, Tan, Ru-San, Alizadehsani, Roohallah and Acharya, U. Rajendra. 2024. "Artificial intelligence in assessing cardiovascular diseases and risk factors via retinal fundus images: A review of the last decade." WIREs Data Mining and Knowledge Discovery. 14 (6). https://doi.org/10.1002/widm.1560Early prediction of sudden cardiac death using multimodal fusion of ECG Features extracted from Hilbert–Huang and wavelet transforms with explainable vision transformer and CNN models
Telangore, Hardik, Azad, Victor, Sharma, Manish, Bhurane, Ankit, Tan, Ru San and Acharya, U. Rajendra. 2024. "Early prediction of sudden cardiac death using multimodal fusion of ECG Features extracted from Hilbert–Huang and wavelet transforms with explainable vision transformer and CNN models." Computer Methods and Programs in Biomedicine. 257. https://doi.org/10.1016/j.cmpb.2024.108455A Pragmatic Approach to Fetal Monitoring via Cardiotocography Using Feature Elimination and Hyperparameter Optimization
Hardalac, Firat, Akmal, Haad, Ayturan, Kubilay, Acharya, U. Rajendra and Tan, Ru-San. 2024. "A Pragmatic Approach to Fetal Monitoring via Cardiotocography Using Feature Elimination and Hyperparameter Optimization." Interdisciplinary Sciences: Computational Life Sciences. 16 (4), pp. 882-906. https://doi.org/10.1007/s12539-024-00647-6Automated System for the Detection of Heart Anomalies Using Phonocardiograms: A Systematic Review
Gudigar, Anjan, Raghavendra, U., Maithri, M., Samanth, Jyothi, Inamdar, Mahesh Anil, Vidhya, V., Vicnesh, Jahmunah, Prabhu, Mukund A., Tan, Ru-San, Yeong, Chai Hong, Molinari, Filippo and Acharya, U. R.. 2024. "Automated System for the Detection of Heart Anomalies Using Phonocardiograms: A Systematic Review." IEEE Access. 12, pp. 138399-138428. https://doi.org/10.1109/ACCESS.2024.3465511