ConcatNeXt: An automated blood cell classification with a new deep convolutional neural network
Article
Erten, Mehmet, Barua, Prabal Datta, Dogan, Sengul, Tuncer, Turker, Tan, Ru‑San and Acharya, U. R.. 2024. "ConcatNeXt: An automated blood cell classification with a new deep convolutional neural network." Multimedia Tools and Applications. https://doi.org/10.1007/s11042-024-19899-x
Article Title | ConcatNeXt: An automated blood cell classification with a new deep convolutional neural network |
---|---|
ERA Journal ID | 18083 |
Article Category | Article |
Authors | Erten, Mehmet, Barua, Prabal Datta, Dogan, Sengul, Tuncer, Turker, Tan, Ru‑San and Acharya, U. R. |
Journal Title | Multimedia Tools and Applications |
Number of Pages | 19 |
Year | 2024 |
Publisher | Springer |
Place of Publication | United States |
ISSN | 1380-7501 |
1573-7721 | |
Digital Object Identifier (DOI) | https://doi.org/10.1007/s11042-024-19899-x |
Web Address (URL) | https://link.springer.com/article/10.1007/s11042-024-19899-x |
Abstract | Examining peripheral blood smears is valuable in clinical settings, yet manual identification of blood cells proves time-consuming. To address this, an automated blood cell image classification system is crucial. Our objective is to develop a precise automated model for detecting various blood cell types, leveraging a novel deep learning architecture. We harnessed a publicly available dataset of 17,092 blood cell images categorized into eight classes. Our innovation lies in ConcatNeXt, a new convolutional neural network. In the spirit of Geoffrey Hinton's approach, we adapted ConvNeXt by substituting the Gaussian error linear unit with a rectified linear unit and layer normalization with batch normalization. We introduced depth concatenation blocks to fuse information effectively and incorporated a patchify layer. Integrating ConcatNeXt with nested patch-based deep feature engineering, featuring downstream iterative neighborhood component analysis and support vector machine-based functions, establishes a comprehensive approach. ConcatNeXt achieved notable validation and test accuracies of 97.43% and 97.77%, respectively. The ConcatNeXt-based feature engineering model further elevated accuracy to 98.73%. Gradient-weighted class activation maps were employed to provide interpretability, offering valuable insights into model decision-making. Our proposed ConcatNeXt and nested patch-based deep feature engineering models excel in blood cell image classification, showcasing remarkable classification performances. These innovations mark significant strides in computer vision-based blood cell analysis. © The Author(s) 2024. |
Keywords | Blood cell image classification; ConcatNeXt; Deep feature engineering; Nested patch division; Computer vision |
Contains Sensitive Content | Does not contain sensitive content |
ANZSRC Field of Research 2020 | 400309. Neural engineering |
Byline Affiliations | Elazig Fethi Sekin City Hospital, Turkey |
School of Business | |
Firat University, Turkey | |
National Heart Centre, Singapore | |
Duke-NUS Medical School, Singapore | |
School of Mathematics, Physics and Computing |
Permalink -
https://research.usq.edu.au/item/z99v4/concatnext-an-automated-blood-cell-classification-with-a-new-deep-convolutional-neural-network
Download files
20
total views9
total downloads2
views this month0
downloads this month
Export as
Related outputs
Automated hip dysplasia detection using novel FlexiLBPHOG model with ultrasound images
Key, Sefa, Kurum, Huseyin, Esmez, Omer, Hafeez-Baig, Abdul, Hajiyeva, Rena, Dogan, Sengul and Tuncer, Turker. 2025. "Automated hip dysplasia detection using novel FlexiLBPHOG model with ultrasound images." Ain Shams Engineering Journal. 16 (1). https://doi.org/10.1016/j.asej.2024.103235Artificial Intelligence-Based Suicide Prevention and Prediction: A Systematic Review (2019-2023)
Atmakuru, Anirudh, Shahini, Alen, Chakraborty, Subrata, Seoni, Silvia, Salvi, Massimo, Hafeez-Baig, Abdul, Rashid, Sadaf, Tan, Ru San, Barua, Prabal Datta, Molinari, Filippo and Acharya, U Rajendra. 2025. "Artificial Intelligence-Based Suicide Prevention and Prediction: A Systematic Review (2019-2023)." Information Fusion. 114. https://doi.org/10.1016/j.inffus.2024.102673Explainable deeply-fused nets electricity demand prediction model: Factoring climate predictors for accuracy and deeper insights with probabilistic confidence interval and point-based forecasts
Ghimire, Sujan, AL-Musaylh, Mohanad S., Nguyen-Huy, Thong, Deo, Ravinesh C., Acharya, Rajendra, Casillas-Perez, David, Yaseen, Zaher Mundher and Salcedo-sanz, Sancho. 2025. "Explainable deeply-fused nets electricity demand prediction model: Factoring climate predictors for accuracy and deeper insights with probabilistic confidence interval and point-based forecasts." Applied Energy. 378 (Part A). https://doi.org/10.1016/j.apenergy.2024.124763Automated EEG-based language detection using directed quantum pattern technique
Dogan, Sengul, Tuncer, Turker, Barua, Prabal Datta and Acharya, U.R.. 2024. "Automated EEG-based language detection using directed quantum pattern technique." Applied Soft Computing. 167 (Part A). https://doi.org/10.1016/j.asoc.2024.112301A Novel Hybrid Model for Automatic Non-Small Cell Lung Cancer Classification Using Histopathological Images
Katar, Oguzhan, Yildirim, Ozal, Tan, Ru-San and Acharya, U Rajendra. 2024. "A Novel Hybrid Model for Automatic Non-Small Cell Lung Cancer Classification Using Histopathological Images." Diagnostics. 14 (22). https://doi.org/10.3390/diagnostics14222497RECOMED: A comprehensive pharmaceutical recommendation system
Zomorodi, Mariam, Ghodsollahee, Ismail, Martin, Jennifer H, Talley, Nicholas J, Salari, Vahid, Pławiak, Paweł, Rahimi, Kazem and Acharya, U.R.. 2024. "RECOMED: A comprehensive pharmaceutical recommendation system." Artificial Intelligence in Medicine. 157. https://doi.org/10.1016/j.artmed.2024.102981Early prediction of sudden cardiac death using multimodal fusion of ECG Features extracted from Hilbert–Huang and wavelet transforms with explainable vision transformer and CNN models
Telangore, Hardik, Azad, Victor, Sharma, Manish, Bhurane, Ankit, Tan, Ru San and Acharya, U. Rajendra. 2024. "Early prediction of sudden cardiac death using multimodal fusion of ECG Features extracted from Hilbert–Huang and wavelet transforms with explainable vision transformer and CNN models." Computer Methods and Programs in Biomedicine. 257. https://doi.org/10.1016/j.cmpb.2024.108455![](/~246/eia/default-thumbnail.png)